Frequency, f = v / λ
f = 2.998 * 10⁸ / 3.55*10⁻⁸
f = 8.445 * 10¹⁵ Hz.
The large piece of jewelry that has a mass of 132.6 g and when is submerged in a graduated cylinder that initially contains 48.6 ml water and the volume increases to 61.2 ml once the piece of jewelry is submerged, has a density of: 10.523 g/ml
To solve this problem the formulas and the procedures that we have to use are:
Where:
- d= density
- m= mass
- v= volume
- v(f) = final volume
- v(i) = initial volume
Information about the problem:
- m = 132.6 g
- v(i) = 48.6 ml
- v(f) = 61.2 ml
- v = ?
- d =?
Applying the volume formula we get:
v = v(f)-v(i)
v = 61.2 ml - 48.6 ml
v = 12.6 ml
Applying the density formula we get:
d = m/v
d = 132.6 g/12.6 ml
d = 10.523 g/ml
<h3>What is density?</h3>
It is a physical quantity that expresses the ratio of the body mass to the volume it occupies.
Learn more about density in: brainly.com/question/1354972
#SPJ4
Answer:
Increasing the surface area of a reactant increases the frequency of collisions and increases the reaction rate. Several smaller particles have more surface area than one large particle. The more surface area that is available for particles to collide, the faster the reaction will occur.
Explanation:
:)