1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bearhunter [10]
4 years ago
12

HELP PLEASE !! how are waves, engery, and matter related??

Physics
1 answer:
Makovka662 [10]4 years ago
7 0

Waves transport energy along a medium without transporting matter. The amount of energy carried by a wave is related to the amplitude of the wave. Thus, the higher the wave is from the resting line, the more energy is put in and vice-versa.

You might be interested in
I need answers and solvings to these questions​
den301095 [7]

1) The period of a simple pendulum depends on B) III. only (the length of the pendulum)

2) The angular acceleration is C) 15.7 rad/s^2

3) The frequency of the oscillation is C) 1.6 Hz

4) The period of vibration is B) 0.6 s

5) The diameter of the nozzle is A) 5.0 mm

6) The force that must be applied is B) 266.7 N

Explanation:

1)

The period of a simple pendulum is given by

T=2\pi \sqrt{\frac{L}{g}}

where

T is the period

L is the length of the pendulum

g is the acceleration of gravity

From the equation, we see that the period of the pendulum depends only on its length and on the acceleration of gravity, while there is no dependence on the mass of the pendulum or on the amplitude of oscillation. Therefore, the correct option is

B) III. only (the length of the pendulum)

2)

The angular acceleration of the rotating disc is given by the equation

\alpha = \frac{\omega_f - \omega_i}{t}

where

\omega_f is the final angular velocity

\omega_i is the initial angular velocity

t is the time elapsed

For the compact disc in this problem we have:

\omega_i = 0 (since it starts from rest)

\omega_f = 300 rpm \cdot \frac{2\pi rad/rev}{60 s/min}=31.4 rad/s is the final angular velocity

t = 2 s

Substituting, we find

\alpha = \frac{31.4-0}{2}=15.7 rad/s^2

3)

For a simple harmonic oscillator, the acceleration and the displacement of the system are related by the equation

a=-\omega^2 x

where

a is the acceleration

x is the displacement

\omega is the angular frequency of the system

For the oscillator in this problem, we have the following relationship

a=-100 x

which implies that

\omega^2 = 100

And so

\omega = \sqrt{100}=10 rad/s

Also, the angular frequency is related to the frequency f by

f=\frac{\omega}{2\pi}

Therefore, the frequency of this simple harmonic oscillator is

f=\frac{10}{2\pi}=1.6 Hz

4)

When the mass is hanging on the sping, the weight of the mass is equal to the restoring force on the spring, so we can write

mg=kx

where

m is the mass

g=9.8 m/s^2 is the acceleration of gravity

k is the spring constant

x = 8.0 cm = 0.08 m is the stretching of the spring

We can re-arrange the equation as

\frac{k}{m}=\frac{g}{x}=\frac{9.8}{0.08}=122.5

The angular frequency of the spring is given by

\omega=\sqrt{\frac{k}{m}}=\sqrt{122.5}=11.1 Hz

And therefore, its period is

T=\frac{2\pi}{\omega}=\frac{2\pi}{11.1}=0.6 s

5)

According to the equation of continuity, the volume flow rate must remain constant, so we can write

A_1 v_1 = A_2 v_2

where

A_1 = \pi r_1^2 is the cross-sectional area of the hose, with r_1 = 5 mm being the radius of the hose

v_1 = 4 m/s is the speed of the petrol in the hose

A_2 = \pi r_2^2 is the cross-sectional area of the nozzle, with r_2 being the radius of the nozzle

v_2 = 16 m/s is the speed in the nozzle

Solving for r_2, we find the radius of the nozzle:

\pi r_1^2 v_1 = \pi r_2^2 v_2\\r_2 = r_1 \sqrt{\frac{v_1}{v_2}}=(5)\sqrt{\frac{4}{16}}=2.5 mm

So, the diameter of the nozzle will be

d_2 = 2r_2 = 2(2.5)=5.0 mm

6)

According to the Pascal principle, the pressure on the two pistons is the same, so we can write

\frac{F_1}{A_1}=\frac{F_2}{A_2}

where

F_1 is the force that must be applied to the small piston

A_1 = \pi r_1^2 is the area of the first piston, with r_1= 2 cm being its radius

F_2 = mg = (1500 kg)(9.8 m/s^2)=14700 N is the force applied on the bigger piston (the weight of the car)

A_2 = \pi r_2^2 is the area of the bigger piston, with r_2= 15 cm being its radius

Solving for F_1, we find

F_1 = \frac{F_2A_1}{A_2}=\frac{F_2 \pi r_1^2}{\pi r_2^2}=\frac{(14700)(2)^2}{(15)^2}=261 N

So, the closest answer is B) 266.7 N.

Learn more about pressure:

brainly.com/question/4868239

brainly.com/question/2438000

#LearnwithBrainly

5 0
3 years ago
A thermometer is removed from a room where the temperature is 70° F and is taken outside, where the air temperature is 10° F. Af
vekshin1

Answer:

T=51.64^\circ F

t=180.10s

Explanation:

The Newton's law in this case is:

T(t)=T_m+Ce^{kt}

Here, T_m is the air temperture, C and k are constants.

We have

70^\circ F in t=0

So:

T(0)=70^\circ F\\T(0)=10^\circ F+Ce^{k(0)}\\70^\circ F=10^\circ F+C\\C=70^\circ F-10^\circ F=60^\circ F

And we have 60^\circ F in t=30 s, So:

T(30)=60^\circ F\\T(30)=10^\circ F+(60^\circ F)e^{k(30)}\\60^\circ F=10^\circ F+(60^\circ F)e^{k(30)}\\50^\circ F=(60^\circ F)e^{k(30)}\\e^{k(30)}=\frac{50^\circ F}{60^\circ F}\\(30)k=ln(\frac{50}{60})\\k=\frac{ln(\frac{50}{60})}{30}=-0.0061

Now, we have:

T=10^\circ F+(60^\circ F)e^{-0.0061t}(1)

Applying (1) for t=1 min=60s:

T=10^\circ F+(60^\circ F)e^{-0.0061*60}\\T=10^\circ F+(60^\circ F)0.694\\T=10^\circ F+41.64^\circ F\\T=51.64^\circ F

Applying (1) for T=30^\circ F:

30^\circ F=10^\circ F+(60^\circ F)e^{-0.0061t}\\30^\circ F-10^\circ F=(60^\circ F)e^{-0.0061t}\\-0.0061t=ln(\frac{20}{60})\\t=\frac{ln(\frac{20}{60})}{-0.0061}=180.10s

8 0
3 years ago
What is the frequency heard by a person driving at 15 m/s toward a factory whistle emitting a
zmey [24]

Answer:

835.29 Hz

Explanation:

When moving towards the source of sound, frequency will be given by

f*=f(vd+v)/v

Where f is the freqiency of the source, vd is the driving speed, v is the speed of sound in air, f* is the inkown frequency when moving forward.

Substituting 800 Hz for f, 340 m/s for v and 15 m/s for vd then

f*=800(15+340)/340=835.29411764704 Hz

Rounded off, the frequency is approximately 835.29 Hz

4 0
4 years ago
Help on matching please, struggling on it. Even just 1 or 2 would help
n200080 [17]

Answer:

7. free fall -- h. 9.8m/s^2

3. Velocity -- x. 60 km/hr west

6. Acceleration -- d. change in velocity/time

8. Centrifugal --  s. towards the centre

13. Work done --w. Force * displacement

5. Uniform circular motion --j. spin cycle in washer

18. Power -- r. kW an hour

7. g -- a. 10N

hope this helps

6 0
2 years ago
Two uniform solid cylinders, each rotating about its central (longitudinal) axis, have the same mass of 3.56 kg and rotate with
Natali5045456 [20]

Answer:

(a) 3107.98 J

(b) 14530.6 J

Explanation:

mass, m = 3.56 kg

angular speed, ω = 179 rad/s

Moment of inertia of solid cylinder, I = 1/2 mr^2

where, m is the mass and r be the radius of the cylinder.

(a) radius, r = 0.330 m

I = 0.5 x 3.56 x 0.330 x 0.330 = 0.194 kgm^2

The formula for the rotational kinetic energy is given by

K = \frac{1}{2}I\omega ^{2}

K = 0.5 x 0.194 x 179 x 179 = 3107.98 J

(b) radius, r = 0.714 m

I = 0.5 x 3.56 x 0.714 x 0.714 = 0.907 kgm^2

The formula for the rotational kinetic energy is given by

K = \frac{1}{2}I\omega ^{2}

K = 0.5 x 0.907 x 179 x 179 = 14530.6 J

3 0
3 years ago
Other questions:
  • What is temperature?
    15·1 answer
  • Carbon dioxide initially at 50 kPa, 400 K, undergoes a process in a closed system until its pressure and temperature are 2 MPa a
    15·1 answer
  • A 5.0-kg rabbit and a 12-kg Irish setter have the same kinetic energy. If the setter is running at speed 4.9 m/s, how fast is th
    7·1 answer
  • The radius of the aorta is «10 mm and the blood flowing through it has a speed of about 300 mm/s. A capillary has a radius of ab
    10·1 answer
  • why do yall think it is ok to judge ppl based on how they look bc from my point of view i dont think its ok i think ppl are beau
    8·2 answers
  • Ifa cup of coffee is at 90°C and a person with a body temperature of 36°C touches it, how will heat flow between
    13·2 answers
  • You are hiking in Yellowstone National Park. A park ranger is speaking to students visiting a hot spring. Temperatures there can
    9·1 answer
  • Describe the forces that act on a skydiver before
    11·1 answer
  • ?
    9·1 answer
  • . a boat can travel in still water. (a) if the boat points directly across a stream whose current is what is the velocity (magni
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!