1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andru [333]
3 years ago
15

You may have noticed runaway truck lanes while driving in the mountains. These gravel-filled lanes are designed to stop trucks t

hat have lost their brakes on mountain grades. Typically, such a lane is horizontal (if possible) and about 38.0 m38.0 m long. Think of the ground as exerting a frictional drag force on the truck. A truck enters a typical runaway lane with a speed of 53.5 mph53.5 mph ( 23.9 m/s23.9 m/s ). Use the work-energy theorem to find the minimum coefficient of kinetic friction between the truck and the lane to be able to stop the truck.
Physics
1 answer:
Sladkaya [172]3 years ago
7 0

Answer:

0.767

Explanation:

The work done on the truck by the frictional drag force is given by

W=-Fd

where

F is the magnitude of the frictional force

d = 38.0 m is the maximum displacement allowed for the truck

The negative sign is due to the fact that the force of friction is opposite to the motion of the truck

The force of friction can also be written as:

F=\mu mg

where

\mu is the coefficient of kinetic friction between the truck and the lane

m is the mass of the truck

g is the acceleration of gravity

So we can rewrite the work done as

W=-\mu mg d (1)

According to the work-energy theorem, the work done by friction is equal to the change in kinetic energy of the truck:

W=K_f - K_i = \frac{1}{2}mv^2-\frac{1}{2}mu^2 (2)

where

v = 0 is the final velocity of the truck

u = 23.9 m/s is the initial velocity of the truck

By combining (1) and (2) we get

-\frac{1}{2}mu^2 = -\mu mg d

And solving for \mu, we find the minimum coefficient of kinetic friction able to stop the truck in a distance d:

\mu = \frac{u^2}{2gd}=\frac{23.9^2}{2(9.8)(38.0)}=0.767

You might be interested in
A boy pushes a 50 kilogram wagon with a force of 4 N east while an orangutan pushes the wagon
ladessa [460]
The wagon does not move
6 0
3 years ago
What is the main difference between the following two velocities: 7 m/s and -7m/s?
Serjik [45]

The difference between the above velocities is that they exist in opposite direction of each other. or it can be said that they are negative vectors of each other.

7 0
2 years ago
A wooden cube with the mass of 1kg is placed on a frictionless plane that makes an angle of 30° with the floor.
Anni [7]

Answer:

I dont know

Explanation:

8 0
2 years ago
The wheel having a mass of 100 kg and a radius of gyration about the z axis of kz=300mm, rests on the smooth horizontal plane.a.
pickupchik [31]

Answer:

a) 20 rad/s

b) 6 m/s

Explanation:

b) Force acting on the wheel is 200 N

mass of the wheel is 100 kg

From Newton's second law of motion, F = m × a

Where F is the net force acting on the body

m is mass of the body

a is the acceleration of the body

By substituting the values we get, a = 2 m/s²

As acceleration is constant, we can use the below formula for calculating the final velocity of the object

v = u + a × t

Where v is the final velocity

u is the initial velocity

a is the acceleration

t is the time taken

u = 0 (∵ it starts from rest)

By substituting the values we get

v = 0 + 2 × 3 = 6 m/s

∴ Speed of center of mass after 3 seconds = 6 m/s

a) As the wheel rotates about z-axis, radius of gyration will be the radius of wheel

∴ Radius of the wheel = 300 mm

Torque acting on the wheel about axis of rotation = 300 mm × 200 N =

60 N·m

Torque = (Moment of inertia) × (angular acceleration)

Assuming that the mass of spokes of the wheel to be negligible,

Moment of inertia of the wheel about axis of rotation = 100 × 300² × 10^{-6} = 9 kg·m²

Then,

60 = 9 × (angular acceleration)

∴ angular acceleration ≈ 6·67 rad/s²

As angular acceleration of the wheel is constant, we can use the below formula for calculation of final angular speed

w_{f} = w_{i} + α × t

Where

w_{f} is the final angular velocity

w_{i} is the initial angular velocity

α is the angular acceleration

t is the time taken

w_{i} is 0 (∵ initially it starts from rest)

By substituting the values we get

w_{f} = 6·67 × 3 = 20 rad/s

∴ Angular velocity of the wheel after three seconds = 20 rad/s

3 0
3 years ago
Find the time taken by body whose rate and distance is 6 miles per hour and 2 miles respectively?
xxTIMURxx [149]

Answer:

12 miles per hour

Explanation:

time is equal to speed times distance

7 0
2 years ago
Read 2 more answers
Other questions:
  • Why is the SI system a consistent system?
    12·2 answers
  • Two blocks can collide in a one-dimensional collision. The block on the left hass a mass of 0.40 kg and is initially moving to t
    6·2 answers
  • Sound is a _____ wave
    11·1 answer
  • The water at Niagara Falls drops through a height of 55.0 m. If the water’s loss of gravitational potential energy shows up as a
    8·1 answer
  • What is the speed of a person that walk 400 meters in 1900 seconds
    5·1 answer
  • Can someone help answer question 8?
    14·2 answers
  • Back to 'Energy & Work'
    9·1 answer
  • HELP WILL GIVE BRAINLIEST
    13·1 answer
  • Insect A moves 5.0 m/min and insect B moves
    12·1 answer
  • A mass of (200 g) of hot water at (75.0°C) is mixed with cold water of mass M at (5.0°C). The final temperature of the mixture i
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!