I found this using the app Socratic. When I took physics in high school it helped me so much.
Answer:
Please help on any part you can. I know it is a lot but any help I’d greatly appreciate. I attempted the problem but still do not understand. Thank you so much!
Explanation:
Please help on any part you can. I know it is a lot but any help I’d greatly appreciate. I attempted the problem but still do not understand. Thank you so much!

Answer:
1) p₀ = 0.219 kg m / s, p = 0, 2) Δp = -0.219 kg m / s, 3) 100%
Explanation:
For the first part, which is speed just before the crash, we can use energy conservation
Initial. Highest point
Em₀ = U = mg y
Final. Low point just before the crash
Emf = K = ½ m v²
Em₀ = Emf
m g y = ½ m v²
v = √ 2 g y
Let's calculate
v = √ (2 9.8 0.05)
v = 0.99 m / s
1) the moment before the crash is
p₀ = m v
p₀ = 0.221 0.99
p₀ = 0.219 kg m / s
After the collision, the car's speed is zero, so its moment is zero.
p = 0
2) change of momentum
Δp = p - p₀
Δp = 0- 0.219
Δp = -0.219 kg m / s
3) the reason is
Δp / p = 1
In percentage form it is 100%
They will rise to the 2nd layer of the atmosphere where the temperature decreases by a lot and then they will blow up
Answer:
A. Inertial Confinement and B. Magnetic Confinement