1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex73 [517]
3 years ago
11

You stand at the top of a deep well. To determine the depth, D, of the well you drop a rock from the top of the well and listen

for the splash as the rock hits the water’s surface. The sound of the splash arrives t = 3.5 s after you drop the rock. The speed of sound in the well is vs = 345 m/s.
(A) Find the quadratic equation for the distance, D, in terms of the time, the acceleration due to gravity, and the speed of sound.**************Arrange the expression so that the coefficient of the D2 term is 1.***********(B) Solve the quadratic equation for the depth of the well, D, in meters.
Physics
1 answer:
Paladinen [302]3 years ago
3 0

Answer:

(A)

\displaystyle D^2-\left (\frac{2v_s^2}{g}+2t_tv_s  \right )D+t_t^2v_s^2=0

<em>(B)  D=54.71 m</em>

Explanation:

<u>Free Fall</u>

When a particle is dropped in free air, it starts falling to the ground with an acceleration equal to the gravity. If one wanted to know the height of launching, it can indirectly be measured by the time it takes to reach the ground by the formula

\displaystyle D=\frac{gt^2}{2}

Solving for t

\displaystyle t=\sqrt{\frac{2D}{g}}

If we are taking into consideration the time we can hear the sound it makes when hitting the ground (or water in this case), we must also consider the speed of the sound for the time it takes to reach back our ears. That time can be computed from the basic equation for the speed

\displaystyle t=\frac{D}{v_s}

(A)

The total measured time is the sum of both times and it's given as t_t=3.5\ seconds

\displaystyle t_t=\sqrt{\frac{2D}{g}}+\frac{D}{v_s}

From this equation we'll manage to compute D

First, we isolate the square root

\displaystyle \sqrt{\frac{2D}{g}}=t_t-\frac{D}{v_s}

Let's square both sides

\displaystyle \frac{2D}{g}=t_t^2-2t_t\frac{D}{v_s}+\frac{D^2}{v_s^2}

Multiplying by v_s^2

\displaystyle \frac{2Dv_s^2}{g}=t_t^2v_s^2-2t_tDv_s+D^2

Rearranging and factoring

\boxed{\displaystyle D^2-\left (\frac{2v_s^2}{g}+2t_tv_s\right )D+t_t^2v_s^2=0}

Now, let's put in numbers:

g=9.8\ m/s^2,\ v_s=345\ m/s,t_t=3.5\ sec

\displaystyle D^2-\left (\frac{2(345)^2}{9.8}+2(3.5)(345)\right )D+(12.25)345^2=0

Computing all the coefficients:

\displaystyle D^2-26,705.82D+1,458,056.25=0

Solving for D, we have two possible solutions:

D=54.71,\ D=26,651.11

The second solution is called "extraneous", since it comes from squaring an equation, which can introduce non-valid (or external) solutions. It's impossible, given the conditions of the problem, that the well could be 26.5 km deep. So we'll keep the only solution as.

<em>D=54.71 m</em>

Let's prove our calculations by computing both times:

\displaystyle t_1=\sqrt{\frac{2(54.71)}{9.8}}=3.34\ sec

\displaystyle t_2=\frac{54.71}{345}=0.16\ sec

We can see their sum is 3.5 seconds, 3.34 of which were taken to reach the bottom of the well, and 0.16 sec took the sound to reach the top.

You might be interested in
Consider two uniform solid spheres where both have the same diameter, but one has twice the mass of the other. how much larger i
egoroff_w [7]
<span>The moment of inertia of the large sphere will be twice that of the smaller sphere.
   The formula for the moment of inertia for a solid sphere is:
 I = (2/5)mr^2
 where
 I = moment of inertia
 m = mass
  r = radius

   Since both spheres have the same diameter, they also have the same radius, so the only change is their mass. And the moment of inertia is directly proportional to their mass as shown by the above formula. So the sphere with twice the mass will have twice the moment of inertia, or 2 times.</span>
5 0
3 years ago
how much gravitational potential energy do you give a 70 kg person when you lift him up 3 m in the air?
SCORPION-xisa [38]

Given gravitational potential energy when he's lifted is 2058 J.

Kinetic energy is transferred to the person.

Amount of kinetic energy the person has is -2058 J

velocity of person = 7.67 m/s².

<h3>Explanation:</h3>

Given:

Weight of person = 70 kg

Lifted height = 3 m

1. Gravitational potential energy of a lifted person is equal to the work done.

PE_g=W=m\times g\times h\\Acceleration due to gravity = g = 9.8 \ m/s^2 \\PE_g= m = m\times g\times h= 70\times 9.8 \times 3 = 2058\ kg.m/s^2 = 2058\ J

Gravitational potential energy is equal to 2058 Joules.

2. The Gravitational potential energy is converted into kinetic energy. Kinetic energy is being transferred to the person.

3. Kinetic energy gained = Potential energy lost = -PE_g = -2058\ kg.m/s^2

Kinetic energy gained by the person = (-2058 kg.m/s²)

4. Velocity = ?

Kinetic energy magnitude= \frac{1}{2} m\times v^2 = m\times g \times h

Solving for v, we get

v=\sqrt{2gh} =\sqrt{2\times 9.8 \times 3} = \sqrt{58.8} = 7.67 m/s^2

The person will be going at a speed of 7.67 m/s².

4 0
3 years ago
A light ray hits a plane surface at 20 degrees. What is the angle between the incident and reflected rays.
Eduardwww [97]

Answer:

140°

Explanation:

The law of reflection states that the angle of redlection equals to the angle of incidence.

When light rays hit surface at 20°, they also leave the surface at the same angle

Since the whole surface has 180° then subtracting these two angles from total angle gives the the angle between the incident and reflected rays.

180°-20°-20°=140°

The angle of incidence and reflection are equal hence 140/2=70°

The question needed the angle between the incident and reflected rays which is already calculated as 140°

7 0
3 years ago
Describe liquids and GASSES IN TERMS OF THERE VOLUME AND SHAPES
antiseptic1488 [7]

Answer:

Explanation:

liquids have definite volume

liquids do not have definite shape. The take the shape of the container in which they are kept.

gases do not have definite volume.

gases do not have definite shape. They take the shape of the container in which they are kept.

Hope this helps

plz mark as barinliest!!!!!!

Stay safe!

3 0
3 years ago
Read 2 more answers
What does Newton's law all about?<br>​
KengaRu [80]
Newton's law is all about motion
5 0
2 years ago
Other questions:
  • there are 1000 g in every kilogram of a box has a mass of 483 g what is the mass of the box in kilogram
    14·1 answer
  • A small piece of solid matter traveling through space is called a __________. When it collides with the atmosphere it is called
    9·1 answer
  • Two objects of mass m move in opposite directions toward each other. The green object moves at velocity v, and the blue object m
    12·2 answers
  • A phone cord is 6.48 m long. The cord has a mass of 0.253 kg. A transverse wave pulse is produced by plucking one end of the tau
    6·1 answer
  • Three remote control cars are identical size and weight. The motors installed in the three cars are 100 watts, 150 watts and 200
    7·1 answer
  • Does gravity affect your weight???
    13·2 answers
  • You need to repair a broken fence in your yard. The hole in your fence is around 3 meters in length and for whatever reason, the
    10·1 answer
  • A toy dart gun has a spring with k= 128 N/m. How much force does it take to pull the spring back 0.0500 m? (Unit = N)​
    13·2 answers
  • Which option correctly matches the chemical formula of a compound with its name?
    5·1 answer
  • Which best describes the difference between internal and thermal energy?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!