Expand your technical knowledge, form global networks and balance life & work commitments. Our advanced diplomas remain current with technological and industry developments.
Answer:
250.7mw
Explanation:
Volume of the reservoir = lwh
Length of reservoir = 10km
Width of reservoir = 1km
Height = 100m
Volume = 10x10³x10³x100
= 10⁹m³
Next we find the volume flow rate
= 0.1/100x10⁹x1/3600
= 277.78m³/s
To get the electrical power output developed by the turbine with 92 percent efficiency
= 0.92x1000x9.81x277.78x100
= 250.7MW
Answer:
The settlement that is expected is 1.043 meters.
Explanation:
Since the pre-consolidation stress of the layer is equal to the effective stress hence we conclude that the soil is normally consolidated soil
The settlement due to increase in the effective stress of a normally consolidated soil mass is given by the formula

where
'H' is the initial depth of the layer
is the Compression index
is the inital void ratio
is the initial effective stress at the depth
is the change in the effective stress at the given depth
Applying the given values we get

Answer:
A
Explanation:
He should get a job in engineering to see what it's like to work in the field.
Answer:
Assumption:
1. The kinetic and potential energy changes are negligible
2. The cylinder is well insulated and thus heat transfer is negligible.
3. The thermal energy stored in the cylinder itself is negligible.
4. The process is stated to be reversible
Analysis:
a. This is reversible adiabatic(i.e isentropic) process and thus 
From the refrigerant table A11-A13

sat vapor
m=

b.) We take the content of the cylinder as the sysytem.
This is a closed system since no mass leaves or enters.
Hence, the energy balance for adiabatic closed system can be expressed as:
ΔE
ΔU
)
workdone during the isentropic process
=5.8491(246.82-219.9)
=5.8491(26.91)
=157.3993
=157.4kJ