(a) The velocity ratio of the screw is 1570.8.
(b) The mechanical advantage of the screw is 785.39.
<h3>
Velocity ratio of the screw</h3>
The velocity ratio of the screw is calculated as follows;
V.R = 2πr/P
where;
- P is the pitch = 1/10 cm = 0.1 cm = 0.001 m
- r is radius = 25 cm = 0.25 m
V.R = (2π x 0.25)/(0.001)
V.R = 1570.8
<h3>Mechanical advantage of the screw</h3>
E = MA/VR x 100%
0.5 = MA/1570.8
MA = 785.39
Learn more about mechanical advantage here: brainly.com/question/18345299
#SPJ1
Answer:
It allows you to walk faster.
Explanation:
It is the same force that allows you to accelerate forward when you run. Your planted foot can grip the ground and push backward, which causes the ground to push forward on your foot. We call this grip type of friction, where the surfaces are prevented from slipping across each other, a static frictional force.
To solve this problem we will use the concepts related to Magnification. Magnification is the process of enlarging the apparent size, not physical size, of something. This enlargement is quantified by a calculated number also called "magnification".
The overall magnification of microscope is

Where
N = Near point
l = distance between the object lens and eye lens
= Focal length
= Focal of eyepiece
Given that the minimum distance at which the eye is able to focus is about 25cm we have that N = 25cm
Replacing,


Therefore the correct answer is C.
The distance covered by an object accelerating from rest is
D = (1/2) · (acceleration) · (time)² .
In this particular case, 'acceleration' is 9.8 m/s² ... due to gravity.
D = (1/2) · (9.8 m/s²) · (1.67 s)²
D = (4.9 m/s²) · (2.789 s²)
D = 13.67 meters
Answer:
Resultant displacement = 1222.3 m
Angle is 88.3 degree from +X axis.
Explanation:
A = 550 m north
B = 500 m north east
C = 450 m north west
Write in the vector form
A = 550 j
B = 500 (cos 45 i + sin 45 j ) = 353.6 i + 353.6 j
C = 450 ( - cos 45 i + sin 45 j ) = - 318.2 i + 318.2 j
Net displacement is given by
R = (353.6 - 318.2) i + (550 + 353.6 + 318.2) j
R = 35.4 i + 1221.8 j
The magnitude is

The direction is given by