Answer:
0.6983 m/s
Explanation:
k = spring constant of the spring = 0.4 N/m
L₀ = Initial length = 11 cm = 0.11 m
L = Final length = 27 cm = 0.27 m
x = stretch in the spring = L - L₀ = 0.27 - 0.11 = 0.16 m
m = mass of the mass attached = 0.021 kg
v = speed of the mass
Using conservation of energy
Kinetic energy of mass = Spring potential energy
(0.5) m v² = (0.5) k x²
m v² = k x²
(0.021) v² = (0.4) (0.16)²
v = 0.6983 m/s
Answer:
16.7 mF
Explanation:
The total capacitance of two capacitors connected in series is given by the formula:

in our problem, we have:
C1 = 45 mF is the capacitance of the first capacitor
C2 = 26 mF is the capacitance of the second capacitor
Substituting into the equation, we find:

The mass of Jupitar is obtained from the calculations as 5.8 * 10^-14 Kg.
<h3>What is the mass of Jupitar?</h3>
There are nine planets in the solar system and the sun lies at the enter of our solar system. This is the heliocentric model of the solar system.
Given that;
T^2 = GMr^3/4π
T = period
G = gravitational constant
r = radius
M = mass of Jupitar
Now;
1 day = 86400 seconds
1.77 days = 1.77 days * 86400 seconds/1 day
= 152928 seconds
Making M the subject of the formula;
M =4πT^2/Gr^3
M = 4 * 3.142 * (152928)^2/6.67 × 10^-11 * (422 × 10^9)^3
M = 2.9 * 10^11/5.0 * 10^24
M = 5.8 * 10^-14 Kg
Learn more about mass of a planet:brainly.com/question/13851553
#SPJ1
The final velocity of the block A will be 2.5 m/sec. The principal of the momentum conversation is used in the given problem.
<h3>What is the law of conservation of momentum?</h3>
According to the law of conservation of momentum, the momentum of the body before the collision is always equal to the momentum of the body after the collision.
In a given concern, mass m₁ is M, mass m₂ is 3M. Initial speed for the mass m₁ and m₂ will be u₁=5 and u₂=0 m/s respectively,
According to the law of conservation of momentum
Momentum before collision =Momentum after collision
m₁u₁+m₂u₂=(m₁+m₂)v
M×5+3M×0=[M+3M]v
The final velocity is found as;
V=51.25 m/s
The velocity of block A is found as;

Hence, the final velocity of the block A will be 2.5 m/sec.
To learn more about the law of conservation of momentum, refer;
brainly.com/question/1113396
#SPJ4