Answer:

Explanation:
Since the <em>rate constant</em> has units of <em>s⁻¹</em>, you can tell that the order of the reaction is 1.
Hence, the rate law is:
![r=d[A]/dt=-k[A]](https://tex.z-dn.net/?f=r%3Dd%5BA%5D%2Fdt%3D-k%5BA%5D)
Solving that differential equation yields to the well known equation for the rates of a first order chemical reaction:
![[A]=[A]_0e^{-kt}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA%5D_0e%5E%7B-kt%7D)
You know [A]₀, k, and t, thus you can calculate [A].
![[A]=0.548M\times e^{-3.6\cdot 10^{-4}/s\times99.2s}](https://tex.z-dn.net/?f=%5BA%5D%3D0.548M%5Ctimes%20e%5E%7B-3.6%5Ccdot%2010%5E%7B-4%7D%2Fs%5Ctimes99.2s%7D)
![[A]=0.529M](https://tex.z-dn.net/?f=%5BA%5D%3D0.529M)
<u>11.35 g</u><u> </u><u>atoms </u><u>of lead are in the sample.</u>
What does density mean?
- The density of an area refers to the quantity of things—which may include people, animals, plants, or objects—there are in it.
- Divide the number of objects by the area's measurement to determine density.
- A country's population density is calculated by dividing its total population by its area, expressed in square kilometers or miles.
We can calculate the volume of the cube by cubing the side of the cube.
Volume of cube = ( 1.000 cm)³
= 1.000 cm³
We can now determine the amount of lead in the cube by multiplying by the density. Because we know we have a 1.000 cubic centimeter and that lead has a density of 11.35 grams per cubic centimeter, we have 11.35 grams of lead.
= ( 1.000 cm³) ( 11.35
)
= 11.35 g
Learn more about density
brainly.com/question/15164682
#SPJ4
Answer:
Answer: B. Water condenses to form clouds.
Explanation:
When the moisture condenses, this results in the release of energy. The energy causes the air to be warm and results in the rise of air in the upper atmosphere. This process results in the instability in the atmosphere and cumulonimbus clouds are formed. These clouds support lightening during a thunderstorm.
Answer:
The standard reaction enthalpy for the given reaction is 235.15 kJ/mol.
Explanation:
..[1]
..[2]
..[3]
..[4]
Using Hess's law:
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
2 × [4] = [2]- (3 ) × [1] - (2) × [3]




The standard reaction enthalpy for the given reaction is 235.15 kJ/mol.