Answer:
t.f. are you sure that's english? it looks like not a real thing
Explanation:
What happens to has when it cools is ...
Step 1) They will start to form liquids, like condensation.
Step 2) As liquids cool, they will turn into solids.
Step 3) As solids cool, they become more stable and solid.
<span>7.7 m/s
First, determine the acceleration you subject the sled to. You have a mass of 15 kg being subjected to a force of 180 N, so
180 N / 15 kg = 180 (kg m)/s^2 / 15 kg = 12 m/s^2
Now determine how long you pushed it. For constant acceleration the equation is
d = 0.5 A T^2
Substitute the known values getting,
2.5 m = 0.5 12 m/s^2 T^2
2.5 m = 6 m/s^2 T^2
Solve for T
2.5 m = 6 m/s^2 T^2
0.41667 s^2 = T^2
0.645497224 s = T
Now to get the velocity, multiply the time by the acceleration, giving
0.645497224 s * 12 m/s^2 = 7.745966692 m/s
After rounding to 2 significant figures, you get 7.7 m/s</span>
Answer:
not work.
Explanation:
if u are saying in a series circuit...
if 1 build burns out and theres other bulbs the circuit wont work anymore.
Answer: 459.14 N
Explanation:
from the question, we have
diameter = 10 m
radius (r) = 5 m
weight (Fw) = 670 N
time (t) = 8 seconds
Circular motion has centripetal force and acceleration pointing perpendicular and inwards of the path, therefore we apply the equation below
∑ F = F c = F w − Fn ..............equation 1
Fn = Fw − Fc = mg − (mv^2 / r) ...................equation 2
substituting the value of v as (2πr / T) we now have
Fn = mg − (m(2πr / T )^2) / r
Fn= mg − (4(π^2)mr / T^2) ..........equation 3
Fw (mass of the person) = mg
therefore m = Fw / g
m = 670 / 9.8 = 68.367 kg
now substituting our values into equation 3
Fn = 670 - ( (4 x (π^2) x 68.367 x 5 ) / 8^2)
Fn = 670 - 210.86
Fn = 459.14 N