we know that center of mass is given as
r = (m₁
+ m₂
)/(m₁ + m₂)
taking derivative both side relative to "t"
dr/dt = (m₁ d
/dt + m₂ d
/dt)/(m₁ + m₂)
v = (m₁
+ m₂
)/(m₁ + m₂)
taking derivative again relative to "t" both side
dv/dt = (m₁ d
/dt + m₂ d
/dt)/(m₁ + m₂)
a= (m₁
+ m₂
)/(m₁ + m₂)
Answer:
13.1 m/s
Explanation:
Given that a baseball is tossed up into the air at an initial velocity 18 m/s. The height of the baseball at time t in seconds is given by h(t) = 18t−4.9t 2 (in meters).
a) What is the average velocity for [1,1.5]?
To calculate the velocity travelled by the ball, differentiate the function.
dh/dt = 18 - 9.8t
Substitute t for 1 in the above Differential function
dh/dt = 18 - 9.8 (1)
But dh/dt = velocity
V = 18 - 9.8
V = 8.2 m/s
Average velocity = ( U + V ) / 2
Average velocity = (18 + 8.2)/2
Average velocity = 26.2/2
Average velocity = 13.1 m/s
Explanation:
We need to apply the conservation law of linear momentum to two dimensions:
Let
= momentum of the 1st ball
= momentum of the 2nd ball
In the x-axis, the conservation law can be written as

or

Since we are dealing with identical balls, all the m terms cancel out so we are left with

Putting in the numbers, we get


In the y-axis, there is no initial y-component of the momentum before the collision so we can write

or

Taking the ratio of the sine equation to the cosine equation, we get

or

Solving now for
,

Answer:
C. position
Explanation:
potential energy is based on stored energy, therefore it is C
Answer:
sound waves
Explanation:
this is because sound waves are longitudinal waves, and longitudinal waves are waves that travel parallel to the direction of the wave motion
thus it cannot be light or electromagnetic waves but only sound waves
hope this helps, please mark it