Answer:
D. 2.8 × 10⁹ N
Explanation:
The force between two charges is directly proportional to the amount of charges at the two points and inversely proportional to the square of distance between the two points.
Fe= k Q₁Q₂/r²
Q₁= -0.0045 C
Q₂= -0.0025 C
r= 0.0060 m
k= 9.00 × 10 ⁹ Nm²/C²
Fe= (9.00 × 10 ⁹ Nm²/C²×-0.0045 C×-0.0025 C)/0.0060²
=2.8 × 10⁹ N
Answer:
5070
Explanation:
add them up and then you get <em>your</em><em> </em><em>answers</em><em> </em>
Answer:
835.29 Hz
Explanation:
When moving towards the source of sound, frequency will be given by
f*=f(vd+v)/v
Where f is the freqiency of the source, vd is the driving speed, v is the speed of sound in air, f* is the inkown frequency when moving forward.
Substituting 800 Hz for f, 340 m/s for v and 15 m/s for vd then
f*=800(15+340)/340=835.29411764704 Hz
Rounded off, the frequency is approximately 835.29 Hz
In this exercise we have to know the definition of energy to understand what is transferred to a body, like this:
Work
<h2>What is energy?</h2>
Despite being used in many different contexts, the scientific use of the word energy has a well-defined and precise meaning: Innate potential to perform work or perform an action. Anything that is working, moving another object, or heating it up, for example, is expending (transferring) energy.
With this definition we can say that the only alternative that responds to this is work.
See more about energy at brainly.com/question/1932868
To solve the problem it is necessary to apply energy conservation.
By definition we know that kinetic energy is equal to potential energy, therefore
PE = KE

Where,
m = mass
g = gravitaty constat
v = velocity
h = height
Re-arrange to find h,

Replacing with our values


Therefore the correct answer is C.