sorry - late reply...just stumbled across tis...hope u can still use it :)
By the mirror equation: 1/di + 1/do = 1/f
<span>
</span>
<span>where di = distance to image = +12cm (+ for real image)</span>
and do = distance to object = +8cm
Substitute and solve for f, the focal length
<span><span>
1/12 + 1/8 = 1/f
</span><span>
1/f = (8 + 12) / 12 * 8 = 20/96
</span><span>
so f = 96/20 = 4.8 cm</span>
</span>
Answer:
The length of the resultant vector is 50 inches
Explanation:
Use the Pythagorean theorem to find the answer, since the addition of these two perpendicular vectors will have a magnitude (length) equal to the hypotenuse of the right angle triangle formed by the two:
The length of the resultant vector is 50 inches
Answer:
d = 19.796m
Explanation:
Since the ball is in the air for 4.02 seconds, the ball should reach the maximum point from the ground in half the total time, therefore, t=2.01s to reach maximum height. At the maximum height, the velocity in the y-direction is 0.
So we know t=2.01, vi=0, g=a=9.8m/s and we are solving for d.
Next, you look for a kinematic equation that has these parameters and the one you should choose is:

Now by substituting values in, we get
d = 19.796m
Answer:
<h2>170km</h2>
Explanation:
If a ship sets out to sail to a point 154 km due north and an unexpected storm blows the ship to a point 72 km due east of its starting point, then the ships distance from the original destination can be gotten by finding the displacement of the ship and this can be gotten by using pythagoras theorem.
Let D be the unknown displacement
According to the theorem;
D² = 154² + 72²
D² = 23716 + 5184
D² = 28900
D = √28900
D = 170km
<em>This means that the ship must now sail a distance of 170km for it to reach its original destination.</em>