I think the correct answer from the choices listed above is the second option. The <span> idea of plate tectonics was difficult for many scientists to accept for many years after it was first introduced because there </span><span>was no explanation yet for how it was happening. It was only to the recent times that these were proven. </span>
Answer: <u>Trough </u> can lift the 403,342 ton pioneering spirit crane vessel 10 meters in 30 seconds as if it was a cork. This about 36 GJ if work and 1 GW of power.
Explanation:
Trough is the correct answer because<u> pioneering scale usually abide only on trough not on the other given options</u>. A long , narrow depression between the waves or ridges is known as a trough. The lower point in the period is the trough.
- <u>Speed -:</u> Speed is the distance per unit of time that a body moves. It's a quantity scaler that has just magnitude.
- <u>Wave energy -: </u>The transmission and capture of energy by ocean surface waves is wave energy (or wave power). The energy collected is then used for all sorts of useful work, including the generation of electricity, water desalination, and water pumping.
- <u>Crest -</u>: A crest point within a cycle on a wave with the highest value of upward displacement. A crest is a point on a surface wave where the medium's displacement is at its height.
- <u>Amplitude -:</u> The maximum displacement or distance measured from its equilibrium position, moved by a point on a vibrating body or wave, is called amplitude. It is equal to half of the vibration path's length.
- <u>Period-</u>: The duration T is the time needed to pass a given point for one complete cycle of vibration. The wave length decreases as the frequency of a wave increases.
- <u>Wavelength-:</u> The distance between two successive crests or troughs of a wave can be described as the wavelength. The frequency is inversely proportional to the wavelength. This implies that the longer the wavelength, the smaller the frequency. Similarly, the shorter the wavelength, the higher the frequency would be.
- <u>Frequency</u> -: Frequency defines the number of waves in a given amount of time that travel through a fixed location. In the Hertz unit, frequency is normally measured.
- <u>Information</u> -: A piece of data is a basic fact about the identity or properties of an object, i.e. a portion of its example.
- <u>Milli -</u>: Milli is known as a merged form meaning 'thousand' (millipede) used in the metric system for unit names equal to one thousandth of the base unit (millimeter) given.
Hence , the answer is <u>TROUGH.</u>
Answer:
same 0.81m
Explanation:
in this problem if we assume there no resistance of any sort. and we apply the energy conservation
change in Potential energy = change in kinetic energy
mgh = 0.5mv^2
gh = 0.5v^2
the above relation suggests that the speed at the bottom is only depending on the height it is released from not on the shape, mass or radius.
so at the bottom
put h = 0.81m
9.81 * 0.81 * 2 = v^2
v=3.99 m/s
both CYLINDER and SPHERE will have same velocity at the bottom if released from the same height irrespective of shape and size
Answer:
117.72kW
Explanation:
Given data
Mass m= 50kg
height x = 2m
time taken = 2 minutes= 129 seconds
let us find the work done
WD= force * distance
WD= mgx
WD= 50*9.81*2
WD= 981 Joules
Let us find the power
Power= work * time
Power= 981*120
Power= 117720
Power= 117.72 kW
Hence the power spent is 117.72kW
Answer:
Options A, D and E....make up cell theory