53
i did it and got it right guys i hope it helps a lot
Answer:
1) R1 + ((R2 × R3)/(R2 + R3))
2) 0.5 A
3) 3.6 V
Explanation:
1) We can see that resistors R2 and R3 are in parallel.
Formula for sum of parallel resistors; 1/Rt = 1/R2 + 1/R3
Making Rt the subject gives;
Rt = (R2 × R3)/(R2 + R3)
Now, Resistor R1 is in series with this sum of R2 and R3. Thus;
Total resistance of circuit = R1 + ((R2 × R3)/(R2 + R3))
2) R_total = R1 + ((R2 × R3)/(R2 + R3))
We are given;
R1 = 7.2 Ω
R2 = 8 Ω
R3 = 12 Ω
R_total = 7.2 + ((8 × 12)/(8 + 12))
R_total = 7.2 + 4.8
R_total = 12 Ω
Formula for current is;
I = V/R
I = 6/12
I = 0.5 A
3) since current through the circuit is 0.5 and R1 is 7.2 Ω.
Thus, potential difference through R1 is;
V = IR = 0.5 × 7.2 = 3.6 V
55 J
Explanation:
Kinetic energy is given as: 0.5MV^2 where M is the mass and V is the speed of rotation. Since the masses are point masses, we calculate the point mass for each mass.
M1 = 30*0.2^2 = 1.2kgm^2
M2 = 20*0.4^2 = 3.2kgm^2
V = 5 rad/s
Calculating using the formula above, we obtain :
0.5(1.2+3.2)5^2 =0.5*4.4*25 = 55 J
Seatbelt- strapped in egg
air bag- cushion around the egg
brakes- parachute(bag that helps the egg go down slower)
Answer:
480J
Explanation:
Using the formula:
Delta U = Q - W
Q:Heat (J)
Delta U: Changes in internal Energy (J)
W:Work (J)
We can plug in the give numbers, Q and W.
Delta U = 658J - 178J = 480J