Answer:
6) 2.6 m/s, 31°
7) 9.2 m/s
8) 1.2 s
Explanation:
I'll do #6, #7, and #8 as examples. You can solve #9 using the equation from #7, and #10 using the equation from #8.
6) Take north to be +y and east to be +x.
Given:
vₓ = 2.2 m/s
vᵧ = 1.3 m/s
Find: v
v² = vₓ² + vᵧ²
v² = (2.2 m/s)² + (1.3 m/s)²
v ≈ 2.6 m/s
θ = atan(vᵧ / vₓ)
θ = atan(1.3 / 2.2)
θ ≈ 31°
7) Given:
Δy = -4.3 m
v₀ = 0 m/s
a = -9.8 m/s²
Find: v
v² = v₀² + 2aΔy
v² = (0 m/s)² + 2 (-9.8 m/s²) (-4.3 m)
v ≈ 9.2 m/s
8) Given:
Δy = -6.7 m
v₀ = 0 m/s
a = -9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
-6.7 m = (0 m/s) t + ½ (-9.8 m/s²) t²
t = 1.2 s
Explanation:
Since the comb has a net charge, it attracts the paper, which has a net charge equal to zero. When the paper touches the comb, an electrical interaction is established between the charge of the comb and the neutral paper, because of this, the paper now has a net charge with the same sign of the comb and they repel.
(a) The angular speed of the system at the instant the beads reach the end of the rod is 9.26 rad/s.
(b) The angular speed of the rod after the after the beads fly off the rod's ends is 25.71 rad/s.
<h3>Moment of inertia through the center of the rod</h3>
I = ¹/₁₂ML²
I = ¹/₁₂ (0.1)(0.5)²
I = 0.0021 kgm²
For the beads, I = 2Mr² = 2(0.03 x 0.1²) = 0.0006 kgm²
Total initial moment of inertia, Ii = 0.0021 kgm² + 0.0006 kgm²
I(i)= 0.0027 kgm²
When the beads reach the end, I = 2Mr² = 2(0.03)(0.25)² = 0.00373 kgm²
Total final moment of inertia, I(f) = 0.0021 kgm² + 0.00373 kgm²
I(f) = 0.00583 kgm²
<h3>Speed of the system</h3>
The speed of the system at the moment the beads reach the end of the rod is calculated as follows;


<h3>Speed of the rod when the beads fly off</h3>

Learn more about moment of inertia of rods here: brainly.com/question/3406242
The specific heat of the substance will be 0.129 J/g°C.
<h3>What is specific heat capacity?</h3>
The amount of heat required to increase a substance's temperature by one degree Celsius is known as specific heat capacity.
Similarly, heat capacity is the relationship between the amount of energy delivered to a substance and the increase in temperature that results.
The given data in the problem is;
Q is the amount of energy necessary to raise the temperature = 3,000.0 j
M is the mass= 0.465 kg.
Δt is the time it takes to raise the temperature.=50°c
s stands for specific heat capacity=?
Mathematically specific heat capacity is given by;

Hence the specific heat of the substance will be 0.129 J/g°C.
To learn more about the specific heat capacity refer to the link brainly.com/question/2530523
Bc more bacterias/animals will live there and the more minerals are there