The electric field due to a point charge of 20uC at a distance of 1 meter away from it is 180000
.
First, you have to know that the space surrounding a load suffers some kind of disturbance, since a load located in that space will suffer a force. The disturbance that this charge creates around it is called an electric field.
In other words, an electric field exists in a certain region of space if, when introducing a charge called witness charge or test charge, it undergoes the action of an electric force.
The electric field E created by the point charge q at any point P, located at a distance r, is defined as:

where K is the constant of Coulomb's law.
In this case, you know:
- K= 9×10⁹

- q= 20 uC=20×10⁻⁶ C
- r= 1 m
Replacing in the definition of electric field:

Solving:
<u><em>E=180000 </em></u>
<u><em /></u>
Finally, the electric field due to a point charge of 20uC at a distance of 1 meter away from it is 180000
.
Learn more:
"The wavelengths are getting longer, meaning the star is moving away from the observer" is the one among the following choices given in the question that this means about the length of light waves and movement of the star. The correct option among all the options that are given in the question is the fourth option or option "D".
C would be the right answer edu
The answer to which type of bond shows two or more atoms baring electrons is B. Covalent
Answer:
See the explanation below
Explanation:
The speed of sound waves can be calculated using the following equation:
![v_{s}=\sqrt{\frac{E}{ro} } \\where:\\E = Young's modulus [GPa]\\ro = density of the material [kg/m^3]](https://tex.z-dn.net/?f=v_%7Bs%7D%3D%5Csqrt%7B%5Cfrac%7BE%7D%7Bro%7D%20%7D%20%5C%5Cwhere%3A%5C%5CE%20%3D%20Young%27s%20modulus%20%5BGPa%5D%5C%5Cro%20%3D%20density%20of%20the%20material%20%5Bkg%2Fm%5E3%5D)
Let's do the exercise of comparing two materials one denser than the other, as is steel and aluminum
ro_steel = 7500 [kg/m^3]
ro_aluminum = 2700 [kg/m^3]
E_steel = 200 [GPa]
E_aluminum = 70 [GPa]
Now replacing the values in the equation for each material.
![v_{steel}=\sqrt{\frac{200*10^9}{7500}}\\ v_{steel}=5163[m/s]](https://tex.z-dn.net/?f=v_%7Bsteel%7D%3D%5Csqrt%7B%5Cfrac%7B200%2A10%5E9%7D%7B7500%7D%7D%5C%5C%20v_%7Bsteel%7D%3D5163%5Bm%2Fs%5D)
And for the aluminum
![v_{aluminum}=\sqrt{\frac{70*10^9}{2700} }\\ v_{aluminum}=5091.75[m/s]](https://tex.z-dn.net/?f=v_%7Baluminum%7D%3D%5Csqrt%7B%5Cfrac%7B70%2A10%5E9%7D%7B2700%7D%20%7D%5C%5C%20v_%7Baluminum%7D%3D5091.75%5Bm%2Fs%5D)
In this way we can see that sound propagates faster in denser materials.