The formula for the mass that remains:

m₀ - the initial mass, t - time, T - the half-life

The answer is c. 1.25 g.
To develop this problem it is necessary to apply the concepts related to Gravitational Potential Energy.
Gravitational potential energy can be defined as

As M=m, then

Where,
m = Mass
G =Gravitational Universal Constant
R = Distance /Radius
PART A) As half its initial value is u'=2u, then



Therefore replacing we have that,

Re-arrange to find v,



Therefore the velocity when the separation has decreased to one-half its initial value is 816m/s
PART B) With a final separation distance of 2r, we have that

Therefore




Therefore the velocity when they are about to collide is 
Each point along the track of one solar mass star represents the star's surface temperature and luminosity at one time.
<h3>What is the one-solar mass star?</h3>
A star having a mass equal to the mass of the Sun is called a one-solar mass star.
Its life track shows the luminous intensity as well as the surface temperature.
Learn more about one-solar mass star.
brainly.com/question/14984575
#SPJ1
Answer:
It is d. 0.80
Trust me i got it right took it and got it right
Answer:
750 J
Explanation:
We have a student that pushes a 50N block across the floor for a distance of 15m. The question is asking how much work was done to move the block.
To solve this, we must know that we are looking for a certain thing called joules. And to get the answer, we must follow the formula of W = FS
F being the force and S being the distance.
W = FS
W = (50)(15)
W = 750
Therefore, 750 joules is our answer.