Answer:
E) The rate of the reaction is directly proportional to the concentration of the reactant.
Explanation:
Give the characteristic of a first order reaction having only one reactant.
A) The rate of the reaction is not proportional to the concentration of the reactant.
B) The rate of the reaction is proportional to the square of the concentration of the reactant.
C) The rate of the reaction is proportional to the square root of the concentration of the reactant.
D) The rate of the reaction is proportional to the natural logarithm of the concentration of the reactant.
E) The rate of the reaction is directly proportional to the concentration of the reactant.
Nitrogen combine with hydrogen to produce ammonia
at a
ratio:

Assuming that the reaction has indeed proceeded to completion- with all nitrogen used up as the question has indicated.
of hydrogen gas would have been consumed while
of ammonia would have been produced. The final mixture would therefore contain
Apply the ideal gas law to find the total pressure inside the container and the respective partial pressure of hydrogen and ammonia:
Answer:
A and B
Explanation:Ap3x approved :)
Answer:0.1677M
Explanation:
Molarity=moles/volume
Number of moles =mass/molar mass
Once you get the number of moles, you apply it to the molarity formula.
Answer:
See explanation and image attached
Explanation:
Alkenes undergo hydrogenation to give the corresponding alkanes. Where the structure of the original alkene is unknown, we can deduce the structure of the alkene from the structure of the products obtained when it undergoes various chemical reactions.
Now, the fact that we obtained 2-methylhexane upon hydrogenation and the two compounds had different heats of hydrogenation means that the two compounds were geometric isomers. The original compounds must have been cis-2-methyl-3-hexene and trans-2-methyl-3-hexene.
When reacted with HCl, the same compound C7H15Cl is formed because the stereo chemistry is removed.
However, we know that the trans isomer is more stable than the cis isomer hence the cis isomer always has a higher heat of hydrogenation than the trans isomer. Thus X is cis-2-methyl-3-hexene.