Answer:
Explanation:
Given that,
Radius r = 15cm = 0.15m
Area of the circular loop can be determined using the formula for area of a circle
A = π r²
A = π × 0.15²
A = 0.0708 m²
Magnetic field B = 1.2T in positive z direction
B = 1.2 •k T.
If loop is remove from the field in the time interval
∆t = 2.3ms = 2.3×10^-3s
We want to find the average EMF and it is given as
ε = —∆Φ/∆t
The final flux is zero
Φf = 0
Where magnetic flux is given as
Φi = BA Cosθ
Where θ=0 since the area and the magnetic field point in the same direction.
Φi = BA Cos0
Φi = BA
Φi = 1.2 × 0.0708
Φi = 0.0848 Vs
Then, ε = —∆Φ/∆t
ε = —(Φf — Φi) / ∆t
ε = —(0-0.0848) / (2.3×10^-3)
ε = 0.0848 / (2.3×10^-3)
ε = 36.88 V
The EMF is 36.88 Volts
Answer:
B) x^2+6x+8
Explanation:
x-4 | x^3+2x^2-16x-32
- x^3-4x^2 <-- (x-4)(x^2)
_________________
6x^2-16x-32
- 6x^2-24x <-- (x-4)(6x)
_________________
8x-32
- 8x-32 <- (x-4)(8)
___________________________
0 | x^2+6x+8
This means the answer is B) x^2+6x+8
Answer:

Explanation:
The magnitude of the net force exerted on q is known, we have the values and positions for
and q. So, making use of coulomb's law, we can calculate the magnitude of the force exerted by
on q. Then we can know the magnitude of the force exerted by
about q, finally this will allow us to know the magnitude of 
exerts a force on q in +y direction, and
exerts a force on q in -y direction.

The net force on q is:

Rewriting for
:

I think it’s Energy is lost when machines don’t work right.