To find the mass of the planet we will apply the relationship of the given circumference of the planet with the given data and thus find the radius of the planet. From the kinematic equations of motion we will find the gravitational acceleration of the planet, and under the description of this value by Newton's laws the mass of the planet, that is,
The circumference of the planet is,

Under the mathematical value the radius would be



Using second equation of motion

Replacing the values given,

Rearranging and solving for 'a' we have,

Using the value of acceleration due to gravity from Newton's law we have that

Here,
r = Radius of the planet
G = Gravitational Universal constant
M = Mass of the Planet


Therefore the mass of this planet is 
Answer:
The lowest mass that an object can have to be considered a star is 0.08 solar masses.
Explanation:
A star is get when it reaches the necessary temperature in its core to nuclear reaction began.
A Nuclear reaction is the fusion of lighter elements into heavier elements.
In stars there is an equilibrium between two forces, the force of gravity in the inward direction due to its own mass and the radiation pressure in the upward direction as a consequence of the nuclear reaction in its core, which is known as hydrostatic equilibrium.
Therefore, the mass of the star must be enough to the force of gravity act in the inward direction, which leads to the increase in pressure, density and of course temperature in the core, allowing the nuclear reaction to begin.
Hence, the lowest mass that an object can have to be consider a star is 0.08 solar masses.
Answer :
- The that gets dissolved