Answer:

Explanation:
From the Question We are told that
Initial Force 
Final Force 
Distance between the front and rear wheels \triangle x=3.20 m
Since

Therefore


Generally the equation for The center of mass is at x_2 is mathematically
given by




Answer:
Lenz's law, in electromagnetism, statement that an induced electric current flows in a direction such that the current opposes the change that induced it. This law was deduced in 1834 by the Russian physicist Heinrich Friedrich Emil Lenz (1804–65).
<span>The following which is not an example of work is </span>C. holding a tray in the cafeteria line because <span>if force displaces an object it should work. I think it's clear and I am pretty sure this answer will help you.</span>
It magnifies light received from distant objects.
Answer:
w = 4,786 rad / s
, f = 0.76176 Hz
Explanation:
For this problem let's use the concept of angular momentum
L = I w
The system is formed by the two discs, during the impact the system remains isolated, we have the forces are internal, this implies that the external torque is zero and the angular momentum is conserved
Initial Before sticking
L₀ = 0 + I₂ w₂
Final after coupling
= (I₁ + I₂) w
The moments of inertia of a disk with an axis of rotation in its center are
I = ½ M R²
How the moment is preserved
L₀ = 
I₂ w₂ = (I₁ + I₂) w
w = w₂ I₂ / (I₁ + I₂)
Let's reduce the units to the SI System
d₁ = 60 cm = 0.60 m
d₂ = 40 cm = 0.40 m
f₂ = 200 min-1 (1 min / 60 s) = 3.33 Hz
Angular velocity and frequency are related.
w₂ = 2 π f₂
w₂ = 2π 3.33
w₂ = 20.94 rad / s
Let's replace
w = w₂ (½ M₂ R₂²) / (½ M₁ R₁² + ½ M₂ R₂²)
w = w₂ M₂ R₂² / (M₁ R₁² + M₂ R₂²)
Let's calculate
w = 20.94 8 0.40² / (12 0.60² + 8 0.40²)
w = 20.94 1.28 / 5.6
w = 4,786 rad / s
Angular velocity and frequency are related.
w = 2π f
f = w / 2π
f = 4.786 / 2π
f = 0.76176 Hz