Answer:
1. 610,000 lb ft
2. 490 J
Explanation:
1. First, convert mi/hr to ft/s:
100 mi/hr × (5280 ft / mi) × (1 hr / 3600 s) = 146.67 ft/s
Now find the kinetic energy:
KE = ½ mv²
KE = ½ (1825 lb / 32.2 ft/s²) (146.67 ft/s)²
KE = 610,000 lb ft
2. KE = ½ mv²
KE = ½ (5 kg) (14 m/s)²
KE = 490 J
She misses. She should have accelerated faster in order to get to her target.
Answer:
a) r = 6122 m and b) v = 32.5 m / s
Explanation:
a) The train in the curve is subject to centripetal acceleration
a = v2 / r
Where v is The speed and r the radius of the curve
They indicate that the maximum acceleration of the person is 0.060g,
a = 0.060 g
a = 0.060 9.8
a = 0.588 m /s²
Let's calculate the radius
v = 216 km / h (1000m / 1km) (1 h / 3600 s =
v = 60 m / s
r = v² / a
r = 60² /0.588
r = 6122 m
b) Let's calculate the speed, for a radius curve 1.80 km = 1800 m
v = √a r
v = √( 0.588 1800)
v = 32.5 m / s
Answer:
a force is represented by a<u> vector </u>the choice of a <u>reference frame</u> is necessary
Explanation: