Answer:
I. Speed = 20m/s
II. Velocity = 20m/s due North.
Explanation:
<u>Given the following data;</u>
Distance = 40m
Time = 2secs
To find the speed;
Mathematically, speed is given by the formula;

Substituting into the equation, we have;

<em>Speed = 20m/s.</em>
In physics, we use the same formula for calculating speed and velocity. The only difference is that speed is a scalar quantity and as such has magnitude but no direction while velocity is a vector quantity and as such it has both magnitude and direction.

<em>Therefore, the velocity is 20m/s due North</em>.
Hey
The formula of kinetic energy is 1/2mv^2
So it depends on mass and velocity
As mass increases , kinetic energy increase .
So option b , the first rider had more mass is correct z
Answer:
Frequency of the light will be equal to 
Explanation:
We have given wavelength of the light 
Velocity of light is equal to 
We have to find the frequency of light
We know that velocity is equal to
, here
is wavelength and f is frequency of light
So frequency of light will be equal to 
So frequency of the light will be equal to 
The magnitude of the current in wire 3 is (I₃)= 0.33A
<h3>How to calculate the value of the magnitude of the current in wire 3 ?</h3>
To calculate the magnitude of the current in wire 3 we are using the Kirchhoff’s current law,
I₁ + I₂ + I₃ = 0
Where we are given,
I₁ = current in wire 1
=0.40 A.
I₂ = current in wire 2
= -0.73 A.
We have to calculate the magnitude of the current in wire 3, I₃
Now we put the known values in above equation, we get,
I₁ + I₂ + I₃ = 0
Or, I₃ = -.(I₁ + I₂)
Or, I₃ = -.(0.40 - 0.73)
Or, I₃ = 0.33 A
From the above calculation, we can conclude that the current in wire 3 is I₃ = 0.33 A
Learn more about current:
brainly.com/question/25537936
#SPJ4