To determine the answer to this item, we use two (2) equations.
Equation for kinetic energy:
KE = 0.5 mv²
Equation for momentum:
P = mv
From the second equation, we can deduced that,
m = P/v
Substituting the known values from the given above,
m = 30/v
Using this expression in the first equation,
KE = 0.5 mv²; 150 = 0.5(30/v)(v²)
The value of v from the equation is 10 m/s.
The mass is therefore calculated as such,
m = 30/v = 30/10 = 3 kg
Hence, the answers are,
<em> Mass = 3 kg</em>
<em> Velocity = 10 m/s</em>
The electric force on the proton is:
F = Eq
F = electric force, E = electric field strength, q = proton charge
The gravitational force on the proton is:
F = mg
F = gravitational force, m = proton mass, g = gravitational acceleration
Since the electric force and gravitational force balance each other out, set their magnitudes equal to each other:
Eq = mg
Given values:
q = 1.60×10⁻¹⁹C, m = 1.67×10⁻²⁷kg, g = 9.81m/s²
Plug in and solve for E:
E(1.60×10⁻¹⁹) = 1.67×10⁻²⁷(9.81)
E = 1.02×10⁻⁷N/C
Answer:
a. Point A
b. 20 V
c. 100 J
Explanation:
a. Point A is at a higher potential because there is a positive sign in front of its magnitude. Since it is a positive integral value, and has a higher magnitude than point B which is at -4, point A is thus at a higher potential than point B.
b. The potential difference between the two points ΔV = A - B
= +16 V - (-4 V)
= +16 V + 4 V
= + 20 V
c. The work done, W in moving a charge Q across a potential difference ΔV is W = QΔV
So, since Q = 5 C and ΔV = + 20 V
W = QΔV
= 5 C × (+ 20 V)
= 100 J
Answer:
There would be 9 b/c there is so many hours of school and the homework depends on how old you are so i am pretty sure it is C.
Explanation:
Answer:
3,200 ounces
Explanation:
1 pound (lb) is equal to 16 ounces (oz):
i.e 1 lb = 16 oz
Given:
200 pounds
To find:
2,000 pounds as ounces.
Steps:
200 (mass) * 16 = 3,200 ounces.
Thank you!
- EE