1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vikki [24]
2 years ago
12

Calculate the change in the energy of an electron that moves from the n = 3 level to the n = 2 level. What type of light is emit

ted?
Physics
1 answer:
marissa [1.9K]2 years ago
5 0

Answer:

Red light

Explanation:

The energy emitted during an electron transition in an atom of hydrogen is given by

E=E_0 (\frac{1}{n_2^2}-\frac{1}{n_1^2})

where

E_0 = 13.6 eV is the energy of the lowest level

n1 and n2 are the numbers corresponding to the two levels

Here we have

n1 = 3

n2 = 2

So the energy of the emitted photon is

E=(13.6) (\frac{1}{2^2}-\frac{1}{3^2})=1.9 eV

Converting into Joules,

E=(1.9 eV)(1.6\cdot 10^{-19} J/eV)=3.0\cdot 10^{-19} J

And now we can find the wavelength of the emitted photon by using the equation

E=\frac{hc}{\lambda}

where h is the Planck constant and c is the speed of light. Solving for \lambda,

\lambda=\frac{hc}{E}=\frac{(6.63\cdot 10^{-34})(3\cdot 10^8)}{3.0\cdot 10^{-19}}=6.63\cdot 10^{-7} m = 663 nm

And this wavelength corresponds to red light.

You might be interested in
50 Point Physics Question!
harina [27]

Answer:

dfsdfgsdfaefffsfffefefef

Explanation:

eg3g3gf3f3f3f3f3f3f3f3f3f3ggeg

7 0
3 years ago
A firefighting crew uses a water cannon that shoots water at 25.0 m/s at a fixed angle of 53.0° above the horizontal. The fire-f
zysi [14]

Answer:

8.8 m and 52.5 m

Explanation:

The vertical component and horizontal component of water velocity leaving the hose are

v_v = vsin(\alpha) = 25sin(53^0) = 25*0.8 = 19.97 m/s

v_h = vcos(\alpha) = 25cos(53^0) = 25*0.6 = 15 m/s

Neglect air resistance, vertically speaking, gravitational acceleration g = -9.8m/s2 is the only thing that affects water motion. We can find the time t that it takes to reach the blaze 10m above ground level

s = v_vt + gt^2/2

10 = 19.97t - 9.8t^2/2

4.9t^2 - 19.97t + 10 = 0

t= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

t= \frac{19.9658877511823\pm \sqrt{(-19.9658877511823)^2 - 4*(4.9)*(10)}}{2*(4.9)}

t= \frac{19.9658877511823\pm14.24}{9.8}

t = 3.49 or t = 0.58

We have 2 solutions for t, one is 0.58 when it first reach the blaze during the 1st shoot up, the other is 3.49s when it falls down

t is also the times it takes to travel across horizontally. We can use this to compute the horizontal distance between the fire-fighters and the building

s_1 = v_ht_1 = 15*0.58 = 8.8 m

s_2 = v_ht_2 = 15*3.49 = 52.5m

8 0
3 years ago
A man pushes his child in a grocery cart. The total mass of the cart and child is 30.0 kg. If the force of friction on the cart
Ber [7]
Newton's second law states that the resultant of the forces applied to an object is equal to the product between the object's mass and its acceleration:
\sum F = ma
where in our problem, m is the mass the (child+cart) and a is the acceleration of the system.

We are only concerned about what it happens on the horizontal axis, so there are two forces acting on the cart+child system: the force F of the man pushing it, and the frictional force F_f acting in the opposite direction. So Newton's second law can be rewritten as
F-F_a = ma
or
F=ma + F_f

since the frictional force is 15 N and we want to achieve an acceleration of a=1.50 m/s^2, we can substitute these values to find what is the force the man needs:
F=(30 kg)(1.5 m/s^2)+15 N=60 N
8 0
3 years ago
According to Bernoulli's fluid formula a An increase in the speed will lower the internal pressure b An increase in the speed wi
lorasvet [3.4K]

Answer:

a An increase in the speed will lower the internal pressure

Explanation:

Bernoulli's fluid formula

P_1+\frac{1}{2}\rho v_1^2+\rho gh_1=P_1+\frac{1}{2}\rho v_2^2+\rho gh_2

where

P = Pressure

ρ = Density of fluid

g = Acceleration due to gravity

h = Height

v = Velocity of fluid

If there is no change in height then we get

P_1+\frac{1}{2}\rho v_1^2=P_1+\frac{1}{2}\rho v_2^2\\\Rightarrow P+\frac{1}{2}\rho v^2=constant

According to the Bernoulli's principle when the speed of the fluid is larger in a region of streamline flow the pressure is smaller in that region. From the above equation it can be seen that increase in speed should simultaneously reduce pressure in order for their sum to be constant.

5 0
3 years ago
A star ending its life with a mass of four to eight times the Sun's mass is expected to collapse and then undergo a supernova ev
Zielflug [23.3K]

Answer:

r = 16 Km

Explanation:

given  

m_n= 1.67 x 10^-27 Kg

M_star = 3.88 x 10^30 Kg  

A= M_star/m_n

A= 3.88*10^30/1.67 x 10^-27

A=2.28 *10^57  neutrons                           A = The number of neutrons  

we use the number of neutrons as a mass number because the star has only neutrons. = 1.2 x 10-15 m

r = r_o*A^1/3

r = 1.2*10^-15*2.28 *10^57^1/3

r = 16 Km

8 0
3 years ago
Other questions:
  • At a distance D from a very long (essentially infinite)uniform line of charge, the elecric field is 1000 N/C. Forthe field stren
    9·2 answers
  • What magnitude charge creates a 1.0 n/c electric field at a point 1.0 m away?
    6·1 answer
  • Despite the gases, dust, and stars that compose the universe, it is still mostly made up of ____________________.
    5·1 answer
  • If you want to know your speed going from point A to point B, what
    9·1 answer
  • The given function represents the position of a particle traveling along a horizontal line. s(t) = 2t3 − 3t2 − 12t + 6 for t ≥ 0
    11·1 answer
  • An airplane flies with a constant speed<br> of 720 km/h. How far can it travel in<br> 3 hours
    7·1 answer
  • What measures air pressure.?
    7·2 answers
  • A feeding buffer protects ______ path from delays in ______ ____.
    11·1 answer
  • A 13.4-mH inductor carries a current i = <img src="https://tex.z-dn.net/?f=I_%7Bmax%7D" id="TexFormula1" title="I_{max}" alt="I_
    11·1 answer
  • Why do high-altitude clouds tend to appear before a warm front arrives in a region?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!