Answer:
dfsdfgsdfaefffsfffefefef
Explanation:
eg3g3gf3f3f3f3f3f3f3f3f3f3ggeg
Answer:
8.8 m and 52.5 m
Explanation:
The vertical component and horizontal component of water velocity leaving the hose are


Neglect air resistance, vertically speaking, gravitational acceleration g = -9.8m/s2 is the only thing that affects water motion. We can find the time t that it takes to reach the blaze 10m above ground level



t = 3.49 or t = 0.58
We have 2 solutions for t, one is 0.58 when it first reach the blaze during the 1st shoot up, the other is 3.49s when it falls down
t is also the times it takes to travel across horizontally. We can use this to compute the horizontal distance between the fire-fighters and the building


Newton's second law states that the resultant of the forces applied to an object is equal to the product between the object's mass and its acceleration:

where in our problem, m is the mass the (child+cart) and a is the acceleration of the system.
We are only concerned about what it happens on the horizontal axis, so there are two forces acting on the cart+child system: the force F of the man pushing it, and the frictional force

acting in the opposite direction. So Newton's second law can be rewritten as

or

since the frictional force is 15 N and we want to achieve an acceleration of

, we can substitute these values to find what is the force the man needs:
Answer:
a An increase in the speed will lower the internal pressure
Explanation:
Bernoulli's fluid formula

where
P = Pressure
ρ = Density of fluid
g = Acceleration due to gravity
h = Height
v = Velocity of fluid
If there is no change in height then we get

According to the Bernoulli's principle when the speed of the fluid is larger in a region of streamline flow the pressure is smaller in that region. From the above equation it can be seen that increase in speed should simultaneously reduce pressure in order for their sum to be constant.
Answer:
r = 16 Km
Explanation:
given
m_n= 1.67 x 10^-27 Kg
M_star = 3.88 x 10^30 Kg
A= M_star/m_n
A= 3.88*10^30/1.67 x 10^-27
A=2.28 *10^57 neutrons A = The number of neutrons
we use the number of neutrons as a mass number because the star has only neutrons. = 1.2 x 10-15 m
r = r_o*A^1/3
r = 1.2*10^-15*2.28 *10^57^1/3
r = 16 Km