Sound intensity = 1/(r^2)
That is Sound intensity is indirectly proportional to the distance. Therefore, sound becomes 9 times less intense.
Answer:
Explanation:
<u></u>
<u>1. Formulae:</u>
Where:
- E = kinetic energy of the particle
- λ = de-Broglie wavelength
- m = mass of the particle
- v = speed of the particle
- h = Planck constant
<u><em>2. Reasoning</em></u>
An alha particle contains 2 neutrons and 2 protons, thus its mass number is 4.
A proton has mass number 1.
Thus, the relative masses of an alpha particle and a proton are:

For the kinetic energies you find:


Thus:


From de-Broglie equation, λ = h/(mv)

(a) The distance of the image formed by the concave mirror is 19.1 cm.
(b) The image formed is diminished and real.
<h3>
Image distance </h3>
The distance of the image formed by the concave mirror is calculated as follows;
1/f = 1/v + 1/u
1/v = 1/f - 1/u
1/v = 1/15 - 1/70
1/v = 0.05238
v = 1/0.05238
v = 19.1 cm
The image distance is smaller than object distance, thus the image formed is diminished and real.
Learn more about concave mirror here: brainly.com/question/13164847
#SPJ1
Answer:
a bowling ball because it has the most mass.
Answer:
The cannonball and the ball will both take the same amount of time before they hit the ground.
Explanation:
For a ball fired horizontally from a given height, there is only a vertical acceleration on it towards the ground. This acceleration is equal to the acceleration due to gravity (g = 9.81 m/s^2). A ball dropped from a height will also only experience the same vertical acceleration downwards which is also equal to g = 9.81 m/s^2.
Therefore both the cannonball and the ball will take the same amount of time to hit the ground if they are released/fired from the same height.