Answer:
<u><em>1) if they are moving away from each other it will take 1.43 secs</em></u>
<u><em>2) if they are moving towards each other then it will take 1.11 secs</em></u>
Explanation:
Distance between them is 10 m
Speed ( if they are moving towards each other)= distance/time
time = 10/8+1
time = distance / speed= 10/9= 1.11 secs
if they are moving away from each other than it will take
time = 10/8-1= 10/7= 1.43 secs
Answer:
d = 4.9 m
Explanation:
It is mentioned that a stone is dropped from a certain height. It is required to find the distance covered by it in one second.
The initial speed of the stone is equal to 0 as it was at rest. Let d is the distance covered by the stone.
Using second equation of motion :

Put u = 0 and a = g

So, the distance covered by it in one second is 4.9 m.
Answer: 22 batches.
Explanation:
Given that 11 kg is a familiar weight for a bag of flour. Also, it is given that It takes 500 g of flour to make one batch of cookies.
How many batches of cookies can you make with one bag of flour
Let's first convert 11 kg into grams (g) by multiplying it by 1000
11 × 1000 = 11000 g
Divide 11000 by 500
11000/500 = 22
Therefore, 22 batches of cookies can be made with one bag of flour.
Answer:
Approximate escape speed = 45.3 km/s
Explanation:
Escape speed

Here we have
Gravitational constant = G = 6.67 × 10⁻¹¹ m³ kg⁻¹ s⁻²
R = 1 AU = 1.496 × 10¹¹ m
M = 2.3 × 10³⁰ kg
Substituting

Approximate escape speed = 45.3 km/s
Answer:
a) t=24s
b) number of oscillations= 11
Explanation:
In case of a damped simple harmonic oscillator the equation of motion is
m(d²x/dt²)+b(dx/dt)+kx=0
Therefore on solving the above differential equation we get,
x(t)=A₀
where A(t)=A₀
A₀ is the amplitude at t=0 and
is the angular frequency of damped SHM, which is given by,

Now coming to the problem,
Given: m=1.2 kg
k=9.8 N/m
b=210 g/s= 0.21 kg/s
A₀=13 cm
a) A(t)=A₀/8
⇒A₀
=A₀/8
⇒
applying logarithm on both sides
⇒
⇒
substituting the values

b) 

, where
is time period of damped SHM
⇒
let
be number of oscillations made
then, 
⇒