0.01 m
< 0.03 m
< 0.04 m urea
As molal concentration rises, so does freezing point depression. It can be expressed mathematically as ΔTf = Kfm.
<h3>What is Colligative Properties ?</h3>
- The concentration of solute particles in a solution, not the composition of the solute, determines a colligative properties .
- Osmotic pressure, boiling point elevation, freezing point depression, and vapor pressure reduction are examples of ligand-like properties.
<h3>What is freezing point depression?</h3>
- When less of another non-volatile material is added, the temperature at which a substance freezes decreases, a process known as Freezing-point depression.
- Examples include combining two solids together, such as contaminants in a finely powdered medicine, salt in water, alcohol in water.
- An significant factor in workplace safety is freezing points.
- If a substance is kept below its freezing point, it may become more or less dangerous.
- The freezing point additionally offers a crucial safety standard for evaluating the impacts of worker exposure to cold conditions.
Learn moree about Colligative Properties here:
brainly.com/question/10323760
#SPJ4
Equation is as follow,
Fe₂O₃ + 3 CO → 2 Fe + 3 CO₂
Oxidation:
3 CO → 3 CO₂
Oxidation state of C in CO is +2, and that in CO₂ is +4. So, carbon has lost 2 electrons per mole and 6 electrons per 3 moles hence,
3 CO → 3 CO₂ + 6 e⁻
Reduction:
Fe₂O₃ → 2 Fe
Oxidation state of Fe in Fe₂O₃ is +3 per atom, and that in Fe is 0. So, Iron has gained 3 electrons per atom and 6 electrons per 2 atoms hence,
Fe₂O₃ + 6e⁻ → 2 Fe
Result:
Iron in Fe₂O₃ has been reduced in this reaction and has played a role of oxidizing agent by oxidizing carbon from +2 state to +4 state.
Answer:
i dont know ask someone else
Explanation:
Answer:
A harmless nuclear fallout
Explanation:
just did this