Answer:
1.19 m/s²
Explanation:
The frequency of the wave generated in the string in the first experiment is f = n/2l√T/μ were T = tension in string = mg were m = 1.30 kg weight = 1300 g , μ = mass per unit length of string = 1.01 g/m. l = length of string to pulley = l₀/2 were l₀ = lent of string. Since f is the second harmonic, n = 2, so
f = 2/2(l₀/2)√mg/μ = 2(√mg/μ)/l₀ (1)
Also, for the second experiment, the period of the wave in the string is T = 2π√l₀/g. From (1) l₀ = 2(√mg/μ)/f and from (2) l₀ = T²g/4π²
Equating (1) and (2) we ave
2(√mg/μ)/f = T²g/4π²
Making g subject of the formula
g = 2π√(2√(m/μ)/f)/T
The period T = 316 s/100 = 3.16 s
Substituting the other values into , we have
g = 2π√(2√(1300 g/1.01 g/m)/200 Hz)/3.16
g = 2π√(2 × 35.877/200 Hz)/3.16
g = 2π√(71.753/200 Hz)/3.16
g = 2π√(0.358)/3.16
g = 2π × 0.599/3.16
g = 1.19 m/s²
1) Increasing the current flow
2) Increasing the number of coils
3) Passing an 'iron core' through the coil of the electromagnet
i think it depends on the speed rate
Answer:The bones of teh linnear eat moving the eardrum
Explanation:
The volume of the square tank is
(10cm • 10cm • 10cm) = 1,000 cm^3 .
The volume of liquid in the cylinder is
500 m^3 = 500,000,000 cm^3 .
(500,000,000) / (1,000) = 500,000
The liquid in the measuring cylinder can fill the square tank 500,000 times.