Answer:
a chemical substance that neutralizes alkalis, dissolves some metals, and turns litmus red; typically, a corrosive or sour-tasting liquid of this kind.
Explanation:
Answer:
The major product from this reaction is 4-bromobenzene diazonium chloride.
Explanation:
The reaction of p-bromoaniline with HNO2 and HCl produces diazonium salt. When primary aromatic amines are nitrosated with nitrous acid in the presence of a strong acid such as HCl, diazonium salts are frequently formed. The diazonium salts are a crucial step in the production of halides and azo compounds. The necessary reaction mechanism is depicted in the illustration in the diagram below.
Answer:
Mutarotation refers to the change in the optical rotation or optical activity of a solution due to the change in the equilibrium of the two anomers. It depends upon the optical activity and ratio of the anomeric forms in the solution.
To measure the optical rotation of a given solution, a polarimeter can be used and thus the ratio of the anomeric forms can be calculated.
Answer:
Explanation: A molecular compound is usually composed of two or more nonmetal elements. Molecular compounds are named with the first element first and then the second element by using the stem of the element name plus the suffix -ide. Numerical prefixes are used to specify the number of atoms in a molecule
Answer: Moles of hydrogen required are 4.57 moles to make 146.6 grams of methane,
.
Explanation:
Given: Mass of methane = 146.6 g
As moles is the mass of a substance divided by its molar mass. So, moles of methane (molar mass = 16.04 g/mol) are calculated as follows.

The given reaction equation is as follows.

This shows that 2 moles of hydrogen gives 1 mole of methane. Hence, moles of hydrogen required to form 9.14 moles of methane is as follows.

Thus, we can conclude that moles of hydrogen required are 4.57 moles to make 146.6 grams of methane,
.