Answer:
Q = 3139.5 j
Explanation:
Given data:
Mass = 50 g
Initial temperature = 25°C
Final temperature = 95°C
Specific heat capacity = 0.897 j/g.°C
Heat absorbed = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 95°C - 25°C
ΔT = 70°C
Q = m.c. ΔT
Q = 50 g× 0.897 J/g.°C ×70°C
Q = 3139.5 j
Answer:
The correct answer is cation. See the explanation below, please.
Explanation:
An atom with a net charge, either positive or negative, is called an ion. In the event that an atom loses an electron (or more), that is, it will have more protons than electrons, and its net charge will be positive, it will be called cation. In the opposite direction, if an atom gains electrons, it will have a negative net charge, called anion.
When the football is on its way up, Kinetic energy is being transformed into Gravitational Potential energy.
Answer:
a) 231.9 °C
b) 100% Sn
c) 327.5 °C
d) 100% Pb
Explanation:
This is a mixture of two solids with different fusion point:


<u>Given that Sn has a lower fusion temperature it will start to melt first at that temperature. </u>
So the first liquid phase forms at 231.9 °C and because Pb starts melting at a higher temperature, that phase's composition will be 100% Sn.
The mixture will be completely melted when you are a the higher melting temperature of all components (in this case Pb), so it will all in liquid phase at 327.5 °C.
At that temperature all Sn was already in liquid state and, therefore, the last solid's composition will be 100% Pb.
1.00
Explanation:
the density of water is always 1