Answer:
B
Explanation:
Since ice is less dense than water, it floats. This forms an ice cover sheet in cold regions such as in the poles. This insulates the water beneath from excessive heat loss hence preventing it from turning into ice too, This protects the marine life beneath. Also, water does not gain heat or loss it rapidly (due to its high heat capacity) hence offering a more or stable temperature range for marine life.
Answer:
Explanation:
For a general equilibrium
aA +bB ⇔ cC + dD ,
the equilibrium constant is K = [C]^c [D]^d / [A]^a[B]^b.
Our reasoning here should be based on the fact that Q has the same expression as K, but is used when the system is not at equilibrium, and the system will react to make Q = K to attain it ( Le Chatelier´s principle ).
So with this in mind, lets answer this question.
1. False: Q can large or small but is not the value of the equilibrium constant, it will predict the side towards the equilibrium will shift to attain it.
2. False: Given the expression for the equilibrium constant, we know if K is small the concentrations of the reactants will be large compared to the equilibrium concentrations of the products.
3. False: when the value of K is large, the equilibrium concentrations of the products will be large and it will lie on the product side.
4. True: From our previous reasongs this is the true one.
5. False: If K is small, the equilibrium lies on the reactants side.
In PV = nRT, n is the number of moles. When 8 grams of oxygen are present,
n = 8/32 = 1/4
So PV = RT/4