The answer is C. The answer is C because if u increase the surface area, the more reactants u will get. and if u get more The reactants will move faster. Hoped that Helped!:-)
Answer:
Explanation:
<u>1. Word equation:</u>
- <em>mercury(II) oxide → mercury + oxygen </em>
<u>2. Balanced molecular equation:</u>
<u>3. Mole ratio</u>
Write the ratio of the coefficients of the substances that are object of the problem:
<u>4. Calculate the number of moles of O₂(g)</u>
Use the equation for ideal gases:
<u>5. Calculate the number of moles of HgO</u>
<u>6. Convert to mass</u>
- mass = # moles × molar mass
- molar mass of HgO: 216.591g/mol
- mass = 0.315mol × 216.591g/mol = 68.3g
Data Given:
Time = t = 30.6 s
Current = I = 10 A
Faradays Constant = F = 96500
Chemical equivalent = e = 63.54/2 = 31.77 g
Amount Deposited = W = ?
Solution:
According to Faraday's Law,
W = I t e / F
Putting Values,
W = (10 A × 30.6 s × 31.77 g) ÷ 96500
W = 0.100 g
Result:
0.100 g of Cu²⁺ is deposited.