The gas is in a rigid container: this means that its volume remains constant. Therefore, we can use Gay-Lussac law, which states that for a gas at constant volume, the pressure is directly proportional to the temperature. The law can be written as follows:

Where P1=5 atm is the initial pressure, T1=254.5 K is the initial temperature, P2 is the new pressure and T2=101.8 K is the new temperature. Re-arranging the equation and using the data of the problem, we can find P2:

So, the new pressure is 2 atm.
ANSWER: NATURE
EXPLAINTION:
m = mass of the box
N = normal force on the box
f = kinetic frictional force on the box
a = acceleration of the box
μ = coefficient of kinetic friction
perpendicular to incline , force equation is given as
N = mg Cos30 eq-1
kinetic frictional force is given as
f = μ N
using eq-1
f = μ mg Cos30
parallel to incline , force equation is given as
mg Sin30 - f = ma
mg Sin30 - μ mg Cos30 = ma
"m" cancel out
a = g Sin30 - μ g Cos30
inserting the values
1.20 = (9.8) Sin30 - (9.8) Cos30 μ
μ = 0.44
Answer:
Explanation:
Bone has a Young’s modulus of about
1.8 × 1010 Pa . Under compression, it can
withstand a stress of about 1.66 × 108 Pa before breaking.
Assume that a femur (thigh bone) is 0.56 m
long, and calculate the amount of compression
this bone can withstand before breakin :).
Answer:
6.62607004 x 10^(-34)m²kg/s
Explanation:
This is the constant that shows the value of energy of a photon in relation to it's frequency.
Please let me know if you want this explained further!
Thanks!