True. Force is acceleration therefor inverse force is increasing acceleration
Answer:
five characteristics: Wavelength, Amplitude, Time-Period, Frequency and Velocity or Speed
The first thing you should know for this case is that work is defined as the product of force by the distance traveled in the direction of force.
We have then:
W = Fd
The distance varies, so we must integrate:
from 0 to 20:
W = ∫F (x) dx
W = ∫32xdx
W = 32∫xdx
W = 32 (x ^ 2/2) = (16) (20 ^ 2) = 6400 ft * lbs
answer:
6400 ft * lbs is work done pulling the rope up 20 ft
To solve this problem we will apply the concepts related to energy conservation. So that the initial energy on the system is equivalent to the final energy.
The initial or final energy will also be the TOTAL mechanical energy of the body.
In the case of the initial energy we will have two types of energy on the body: Kinetic energy and potential energy.
For the case of the final energy we will only have the potential energy in terms of the height , the mass m, and the gravity g
The total mechanical energy will be equivalent in the terms required, to the final potential energy.
Answer:
c 275 m
Explanation:
Given parameters:
Final velocity = 73.5m/s
Unknown:
Height of fall = ?
Solution:
Since the body is falling from rest, U = 0 or initial velocity is 0m/s. Then we use one of the kinematics equation to solve this problem.
V² = U² + 2gH
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity
H is the height
73.5² = 0² + (2 x 9.8 x h)
5402.25 = 19.6h
h = 275.6m