The helium may be treated as an ideal gas, so that
(p*V)/T =constant
where
p = pressure
V = volume
T = temperature.
Note that
7.5006 x 10⁻³ mm Hg = 1 Pa
1 L = 10⁻³ m³
Given:
At ground level,
p₁ = 752 mm Hg
= (752 mm Hg)/(7.5006 x 10⁻³ mm Hg/Pa)
= 1.0026 x 10⁵ Pa
V₁ = 9.47 x 10⁴ L = (9.47 x 10⁴ L)*(10⁻³ m³/L)
= 94.7 m³
T₁ = 27.8 °C = 27.8 + 273 K
= 300.8 K
At 36 km height,
P₂ = 73 mm Hg = 73/7.5006 x 10⁻³ Pa
= 9.7326 x 10³ Pa
T₂ = 235 K
If the volume at 36 km height is V₂, then
V₂ = (T₂/p₂)*(p₁/T₁)*V₁
= (235/9.7326 x 10³)*(1.0026 x 10⁵/300.8)*94.7
= 762.15 m³
Answer: 762.2 m³
Answer:

Explanation:
Mass and weight ain't the same thing. So, for calculating weight we would use Newton's 2nd Law of Motion i.e. Force = Mass × Acceleration.
According to question,
The mass is 20kg
Acceleration is 9.8 m/s^2
Putting the given values into the formula,
F = 20 × 9.8
F = 196N
So, the weight of the rock is 196 N
Hope it helps!<3
Answer:
I would increase the horizontal velocity or the vertical velocity or both to make the ball go the extra distance to cross the goal line.
Explanation:
In order to increase the horizontal distance covered by the ball, we need to examine the variables involved in the formula of range of projectile. The formula for the range of projectile is given as follows:
R = V₀² Sin 2θ/g
where, g is a constant on earth (acceleration due to gravity) and θ is the angle of ball with ground at the time of launching. The value of θ should be 45° for maximum range. In this case we do not know the angle so, we can not tell if we should change it or not.
The only parameter here which we can increase to increase the range is launch velocity (V₀). The formula for V₀ in terms of horizontal and vertical components is as follows:
V₀ = √(V₀ₓ² + V₀y²)
where,
V₀ₓ = Horizontal Velocity
V₀y = Vertical Velocity
Hence, it is clear from the formula that we can increase both the horizontal and vertical velocity to increase the initial speed which in turn increases the horizontal distance covered by the ball.
<u>Therefore, I would increase the horizontal velocity or the vertical velocity or both to make the ball go the extra distance to cross the goal line.</u>
Answer:
0.25714 m/s
Explanation:
= Mass of 45 kg skater
= Mass of 60 kg skater
= Speed of 45 kg skater
= Speed of 60 kg skater
As the momentum is conserved

= Relative speed = 0.6 m/s

The speed of the 60kg skater is 0.25714 m/s
Answer:
9800 N
Explanation:
applying,
W = Fd.................. Equation 1
Where W = work done by the engine, F = Force exterted to lift the beam, d = distance.
make F the subject of the equation
F = W/d............... Equation 2
From the question,
Given: W = 1421000 J, d = 145 meters.
Substitute these values into equation 2
F = 1421000/145
F = 9800 N