Answer:
b. v = 0, a = 9.8 m/s² down.
Explanation:
Hi there!
The acceleration of gravity is always directed to the ground (down) and, near the surface of the earth, has a constant value of 9.8 m/s². Since the answer "b" is the only option with an acceleration of 9.8 m/s² directed downwards, that would solve the exercise. But why is the velocity zero at the highest point?
Let´s take a look at the height function:
h(t) = h0 + v0 · t + 1/2 g · t²
Where
h0 = initial height
v0 = initial velocity
t = time
g = acceleration due to gravity
Notice that the function is a negative parabola if we consider downward as negative (in that case "g" would be negative). Then, the function has a maximum (the highest point) at the vertex of the parabola. At the maximum point, the slope of the tangent line to the function is zero, because the tangent line is horizontal at a maximum point. The slope of the tangent line to the function is the rate of change of height with respect to time, i.e, the velocity. Then, the velocity is zero at the maximum height.
Another way to see it (without calculus):
When the ball is going up, the velocity vector points up and the velocity is positive. After reaching the maximum height, the velocity vector points down and is negative (the ball starts to fall). At the maximum height, the velocity vector changed its direction from positive to negative, then at that point, the velocity vector has to be zero.
Answer:
It is found that W1 - W2 loss in weight of solid when immersed in water is equal to the weight of the water displaced by the body. This verifies Archimedes' principle.
Explanation :
Absorption coefficient of a material determines how much sound is absorbed by the material.
To build a soundproof room, Heavy curtains and carpet can be used. They reduce reverberation.
Reverberation means an echoing sound which persists for some time. For example, when we bang on a huge piece of metal, we hear the reverberation even after we stop banging.
Hence, option (A) and (D) are correct.
Answer:
A: The acceleration is 7.7 m/s up the inclined plane.
B: It will take the block 0.36 seconds to move 0.5 meters up along the inclined plane
Explanation:
Let us work with variables and set

As shown in the attached free body diagram, we choose our coordinates such that the x-axis is parallel to the inclined plane and the y-axis is perpendicular. We do this because it greatly simplifies our calculations.
Part A:
From the free body diagram we see that the total force along the x-axis is:

Now the force of friction is
where
is the normal force and from the diagram it is 
Thus
Therefore,

Substituting the value for
we get:

Now acceleration is simply

The negative sign indicates that the acceleration is directed up the incline.
Part B:

Which can be rearranged to solve for t:

Substitute the value of
and
and we get:
which is our answer.
Notice that in using the formula to calculate time we used the positive value of
, because for this formula absolute value is needed.
Answer:
17.2 seconds
Explanation:
Given:
v₀ = 0 m/s
a₁ = 10.0 m/s²
t₁ = 3.0 s
a₂ = 16 m/s²
t₂ = 5.0 s
a₃ = -12 m/s²
v₃ = 0 m/s
Find: t
First, find v₁:
v₁ = a₁t₁ + v₀
v₁ = (10.0 m/s²) (3.0 s) + (0 m/s)
v₁ = 30 m/s
Next, find v₂:
v₂ = a₂t₂ + v₁
v₂ = (16 m/s²) (5.0 s) + (30 m/s)
v₂ = 110 m/s
Finally, find t₃:
v₃ = a₃t₃ + v₂
(0 m/s) = (-12 m/s²) t₃ + (110 m/s)
t₃ = 9.2 s
The total time is:
t = t₁ + t₂ + t₃
t = 3.0 s + 5.0 s + 9.2 s
t = 17.2 s
Round as needed.