There would be very less percentage loss<span> of the kinetic energy during </span>the conversion<span> to internal energy, assuming that there is less air in the </span>surroundings<span>. Also, the friction will contribute to the conversion where if it is, the percentage loses is negligible.</span>
<h2>your answer is going to be image 1 that one looks the most decent </h2>
Answer:
The efficiency of the system is 63.7 %
Explanation:
Given;
input power of the motor, = 1.5 kW = 1,500 W
mass of the car lifted, m = 1300 kg
height through which the car was lifted, h = 1.8 m
time, t = 24 s
The output power of the motor is calculated as;
Output Power = F x v
= (mg) x (d/t)
= (1300 x 9.8) x (1.8 / 24)
= 12,740 x 0.075
= 955.5 W
The efficiency of the system is calculated as;

The correct answer is 63.7%
Ok. PEMDAS tells us to take care of the square first. When we do that, the denominator becomes
(6.4)^2 x 10^12
= 40.96 x 10^12 .
Now it's just a matter of mashing out the fraction.
The 'mantissa' (the number part) is
6/40.96 = 0.1465
and the order of magnitude is
10^24 / 10^12 = 10^12 .
Put it all together and you've got
1.465 x 10^11 .
Diffuse reflection have a great day