Complete Question:
A basketball player tosses a basketball m=1kg straight up with an initial speed of v=7.5 m/s. He releases the ball at shoulder height h= 2.15m. Let gravitational potential energy be zero at ground level
a) Give the total mechanical energy of the ball E in terms of maximum height hn it reaches, the mass m, and the gravitational acceleration g.
b) What is the height, hn in meters?
Answer:
a) Energy = mghₙ
b) Height, hₙ = 5.02 m
Explanation:
a) Total energy in terms of maximum height
Let maximum height be hₙ
At maximum height, velocity, V=0
Total mechanical energy , E = mgh + 1/2 mV^2
Since V=0 at maximum height, the total energy in terms of maximum height becomes
Energy = mghₙ
b) Height, hₙ in meters
mghₙ = mgh + 1/2 mV^2
mghₙ = m(gh + 1/2 V^2)
Divide both sides by mg
hₙ = h + 0.5 (V^2)/g
h = 2.15m
g = 9.8 m/s^2
V = 7.5 m/s
hₙ = 2.15 + 0.5(7.5^2)/9.8
hₙ = 2.15 + 2.87
hₙ = 5.02 m
Answer:
The magnitude of the acceleration is 
The direction is
i.e the negative direction of the z-axis
Explanation:
From the question we are that
The mass of the particle 
The charge on the particle is 
The velocity is 
The the magnetic field is 
The charge experienced a force which is mathematically represented as

Substituting value



Note :

Now force is also mathematically represented as

Making a the subject

Substituting values



Explanation :
Work is done when a force is applied to create a displacement on an object.
Thus, the work done depends on the two factors i.e.
(1) Applied force (F)
(2) Distance or displacement (d)
Mathematically, work done is 
It also depends on the angle between the force and the displacement.

For example,
A person carries a weight of 20 kg and lifts it on his head 1.5 m above the surface. So, the work done by him on the luggage will be:

or


So, 
Hence, the work done by him on the luggage is 294 Joules.