The atomic mass of this question is 10.811
Answer:
α = 1.114 × 10⁻³ (°C)⁻¹
Explanation:
Given that:
Length of rod (L) = 1.5 m,
Diameter (d) = 0.55 cm,
Area (A) = 
Radius (r) = d / 2 = 0.275 cm,
Voltage across the rod (V) = 15.0 V.
At initial temperature (T₀) = 20°C, the current (I₀) = 18.8 A while at a temperature (T) = 92⁰C, the current (I) = 17.4 A
a) The resistance of the rod (R) is given as:

Therefore the resistivity and for the material of the rod at 20 °C (ρ) is:
b) The temperature coefficient of resistivity at 20°C for the material of the rod (α) can be gotten from the equation:
![R_T=R_0[1-\alpha (T-T_0)]\\but,R_T=\frac{V}{I}=\frac{15}{17.4}=0.862\\](https://tex.z-dn.net/?f=R_T%3DR_0%5B1-%5Calpha%20%28T-T_0%29%5D%5C%5Cbut%2CR_T%3D%5Cfrac%7BV%7D%7BI%7D%3D%5Cfrac%7B15%7D%7B17.4%7D%3D0.862%5C%5C)
Rearranging to make α the subject of formula:

Answer:
Friction acts in the opposite direction of the velocity. As static friction acts in the opposite direction to the acceleration. (opposite way)
Explanation:
Answer:
Explanation:
If a small piece of Styrofoam packing material is dropped from a height of 1.90 m above the ground and reaches a terminal speed after falling 0.400m, the Change in distance will be 1.90m - 0.400 = 1.50m
If it takes 5.4secs fo r the Styrofoam to reach the ground, the terminal velocity will be expressed as;
Vt = change in distance/time
Vt = 1.5m/5.4s
Vt = 0.28m/s
Note that the Styrofoam reaches its final velocity when the acceleration is zero.
To get the constant value B from the equation a = g-Bv
a = 0m/s²
g = 9.81m/s²
v = 0.28m/s
Substituting the parameters into the formula.
0 = 9.81-0.28B
-9.81 = -0.28B
Divide both sides by -0.28
B = -9.81/-0.28
B = 35.04
b) at t = 0sec, the initial terminal velocity is also zero.
Substituting v = 0 into the equation to get the acceleration.
a = g-Bv
a = g-B(0)
a = g
Hence the acceleration at t =0s is equal to the acceleration due to gravity which is 9.81m/s²
c) Given speed v = 0.150m/s
g = 9.81m/s²
B = 35.04
Substituting the given data into the equation a = g-Bv
a = 9.81-35.04(0.15)
a = 9.81 - 5.26
a = 4.55m/s²
Answer:
The magnitude of the force is 12 N Upwards
Explanation:
The force on a positive charge will be in the same direction as the field, but the force on a negative charge will be in the opposite direction to the field. Thus the direction of the force is upward.
Given;
magnitude of charge, q = 0.06 C
magnitude of electric field, E = 200 N/C
The magnitude of the force is given by;
F = qE
F = 0.06 x 200 N/C
F = 12 N Upwards
Therefore, the magnitude of the force is 12 N Upwards