Normally, the water pressure inside a pump is higher than the vapor pressure: in this case, at the interface between the liquid and the vapor, molecules from the liquid escapes into vapour form. Instead, when the pressure of the water becomes lower than the vapour pressure, molecules of vapour can go inside the water forming bubbles: this phenomenon is called
cavitation.
So, cavitation occurs when the pressure of the water becomes lower than the vapour pressure. In our problem, vapour pressure at

is 1.706 kPa. Therefore, the lowest pressure that can exist in the pump without cavitation, at this temperature, is exactly this value: 1.706 kPa.
Answer:
East component is: 18.64 m/s
Explanation:
If the resultant is 32.5 m/s directed 35 degrees east of north, then we use the sin(35) projection to find the east component of the velocity:
East component = 32.5 m/s * sin(35) = 18.64 m/s
Then the force will also be doubled
Answer:
if its so easy why dont u do it .
Explanation: