Answer:
-6.44 m/s²
Explanation:
Given:
Δx = 60 m
v₀ = 27.8 m/s
v = 0 m/s
Find: a
v² = v₀² + 2aΔx
(0 m/s)² = (27.8 m/s)² + 2a (60 m)
a = -6.44 m/s²
A b and c its so simple bro send it 23-89
Answer: c
Explanation:
Analytical methods
Answer:
24) W = 75 [J]; 25) W = 1794[J]; 26) n = 8.8 (times) or 9 (times)
Explanation:
24) This problem can be solved by means of the following equation.

where:
DU = internal energy difference [J]
Q = Heat transfer [J]
W = work [J]
Since there are no temperature changes the internal energy change is equal to zero
DU = 0
therefore:

The work is equal to the heat transfered, W = 75 [J].
25) The heat transfer can be calculated by means of the following equation.
![Q = m*c_{p}*DT\\where:\\m = mass = 0.4[kg]\\c_{p} = specific heat = 897[J/kg*K]\\DT= 5 [C]](https://tex.z-dn.net/?f=Q%20%3D%20m%2Ac_%7Bp%7D%2ADT%5C%5Cwhere%3A%5C%5Cm%20%3D%20mass%20%3D%200.4%5Bkg%5D%5C%5Cc_%7Bp%7D%20%3D%20specific%20heat%20%3D%20897%5BJ%2Fkg%2AK%5D%5C%5CDT%3D%205%20%5BC%5D)
Q = 0.4*897*5 = 1794[J]
Work is equal to heat transfer, W = 1794[J]
26) Each time the bag falls the potential energy is transformed into heat energy, which is released into the environment. In this way the potential energy is equal to the developed heat.

where:
m = mass = 0.5[kg]
g = gravity = 9.81[m/s^2]
h = 1.5 [m]
![E_{p}=0.5*9.81*1.5\\E_{p}=7.36[J]](https://tex.z-dn.net/?f=E_%7Bp%7D%3D0.5%2A9.81%2A1.5%5C%5CE_%7Bp%7D%3D7.36%5BJ%5D)
The heat developed can be calculated by means of the following equation.
![Q=m*c_{p}*DT\\Q=0.5*130*1\\Q=65[J]](https://tex.z-dn.net/?f=Q%3Dm%2Ac_%7Bp%7D%2ADT%5C%5CQ%3D0.5%2A130%2A1%5C%5CQ%3D65%5BJ%5D)
The number of times will be calculated as follows
n = 65/7.36
n = 8.8 (times) or 9 (times)
Answer:
1.696 nm
Explanation:
For a diffraction grating, dsinθ = mλ where d = number of lines per metre of grating = 5510 lines per cm = 551000 lines per metre and λ = wavelength of light = 467 nm = 467 × 10⁻⁹ m. For a principal maximum, m = 1. So,
dsinθ = mλ = (1)λ = λ
dsinθ = λ
sinθ = λ/d.
Also tanθ = w/D where w = distance of center of screen to principal maximum and D = distance of grating to screen = 1.03 m
From trig ratios 1 + cot²θ = cosec²θ
1 + (1/tan²θ) = 1/(sin²θ)
substituting the values of sinθ and tanθ we have
1 + (D/w)² = (d/λ)²
(D/w)² = (d/λ)² - 1
(w/D)² = 1/[(d/λ)² - 1]
(w/D) = 1/√[(d/λ)² - 1]
w = D/√[(d/λ)² - 1] = 1.03 m/√[(551000/467 × 10⁻⁹ )² - 1] = 1.03 m/√[(1179.87 × 10⁹ )² - 1] = 1.03 m/1179.87 × 10⁹ = 0.000848 × 10⁻⁹ = 0.848 × 10⁻¹² m = 0.848 nm.
w is also the distance from the center to the other principal maximum on the other side.
So for both principal maxima to be on the screen, its minimum width must be 2w = 2 × 0.848 nm = 1.696 nm
So, the minimum width of the screen must be 1.696 nm