Answer:b
Explanation: If you look at the line on the graph, you can see that it is going downward, meaning it has a negative slope, and choice b is the only one that has a negative slope
Answer:
Terminal speed, v = 6901.07 m/s
Explanation:
It is given that,
Mass of the horizontal bar, m = 30 g = 0.03 kg
Length of the bar, l = 13 cm = 0.13 m
Magnetic field, 
Resistance, R = 1.2 ohms
We need to find the terminal speed oat which the bar falls. When terminal speed is reached,
Force of gravity = magnetic force
..................(1)
i is the current flowing
l is the length of the rod
Due to the motion in rods, an emf is induced in the coil which is given by :
, v is the speed of the bar


Equation (1) becomes,



v = 6901.07 m/s
So, the terminal speed at which the bar falls is 6901.07 m/s. Hence, this is the required solution.
Answer:
the spring compressed is 0.1878 m
Explanation:
Given data
mass = 3 kg
spring constant k = 750 N/m
vertical distance h = 0.45
to find out
How far is the spring compressed
solution
we will apply here law of mass of conservation
i.e
gravitational potential energy loss = gain of eastic potential energy of spring
so we say m×g×h = 1/2× k × e²
so e² = 2×m×g×h / k
so
we put all value here
e² = 2×m×g×h / k
e² = 2×3×9.81×0.45 / 750
e² = 0.0353
e = 0.1878 m
so the spring compressed is 0.1878 m