Since 1m/s=3.6 km/h, we can conclude that 10.0m/s = 36 km/h
Answer:
1.04μT
Explanation:
Due to both wires have opposite currents, the magnitude of the total magnetic field is given by

I: electric current = 10A
mu_o: magnetic permeability of vacuum = 4pi*10^{-7} N/A^2
r1: distance from wire 1 to the point in which B is measured.
r2: distance from wire 2.
The distance between wires is 40cm = 0.4m. Hence, r1=0.2m r2=0.6m
By replacing in the formula you obtain:

hence, the magnitude of the magnetic field is 1.04μT
Answer:
9
Explanation:
2.13 rad/s * 26.9 sec
2.13 * 26.9
57.297
3282.88 deg / 360 deg = 9.12
It makes 9 complete revolutoins
Its letter C. 5N to the left. Since Jeremy's force in Newtons are higher than Amanda's (in newtons), and since Jeremy's force directs to the left, then the direction of the force will be to the LEFT. Then subtract the higher one to the lower one so that would be: 10N-5N=5N. So it is C. 5N to the left.
Treating the system as a point-like particle allows us to assign a quantity to the object and monitor this quantity throughout any changes. The complexity of the system which includes geometry, appearance, and extensions can complicate the studying of the system.