Answer:
a) before immersion
C = εA/d = (8.85e-12)(25e-4)/(1.31e-2) = 1.68e-12 F
q = CV = (1.68e-12)(255) = 4.28e-10 C
b) after immersion
q = 4.28e-10 C
Because the capacitor was disconnected before it was immersed, the charge remains the same.
c)*at 20° C
C = κεA/d = (80.4*)(8.85e-12)(25e-4)/(1.31e-2) = 5.62e-10 F
V = q/C = 4.28e-10 C/5.62e-10 C = 0.76 V
e)
U(i) = (1/2)CV^2 = (1/2)(1.68e-12)(255)^2 = 5.46e-8 J
U(f) = (1/2)(5.62e-10)(0.76)^2 = 1.62e-10 J
ΔU = 1.62e-10 J - 5.46e-8 J = -3.84e-8 J
The formulas used to analyze the horizontal and vertical motion of projectiles launched at an angle involve the use of tangent, cosine and sine.
<h3>
What is vertical motion of a projecile?</h3>
The vertical motion of a projectile is affected by gravity and the velocity of vertical motion given by the following formula;
Vy = Vsinθ
<h3>
What is horizontal motion of a projecile?</h3>
The horizontal velocity of a projectile is given by the following formula;
Vx = Vcosθ
<h3>Direction of the motion</h3>
The direction of the motion is calculated as follows;
tanθ = Vy/Vx
Thus, the formulas used to analyze the horizontal and vertical motion of projectiles launched at an angle involve the use of tangent, cosine and sine.
Learn more about vertical motion here: brainly.com/question/24216590
#SPJ4
A star may form a black hole
once is true. After the marked supernova explosion, the star shrinks because it
sheds away the gaseous layers of the star. And especially if the star is large,
it will form into a black hole.
Answer:
a) the Tunguska meteoric impact
Explanation:
The Tunguska Event, sometimes known as the Tungus Meteorite is thought to have resulted from an asteroid or comet entering the earth's atmosphere and exploding. The event released as much energy as fifteen one-megaton atomic bombs. As well as blasting an enormous amount of dust into the atmosphere, felling 60 million trees over an area of more than 2000 square kilometres. Shaidurov suggests that this explosion would have caused "considerable stirring of the high layers of atmosphere and change its structure." Such meteoric disruption was the trigger for the subsequent rise in global temperatures
According to Vladimir Shaidurov of the Russian Academy of Sciences, the apparent rise in average global temperature recorded by scientists over the last hundred years or so could be due to atmospheric changes that are not connected to human emissions of carbon dioxide from the burning of natural gas and oil.