1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kaylis [27]
3 years ago
5

The combination of an applied force and a friction force produces a constant total torque of 35.5 N · m on a wheel rotating abou

t a fixed axis. The applied force acts for 5.80 s. During this time, the angular speed of the wheel increases from 0 to 10.4 rad/s. The applied force is then removed, and the wheel comes to rest in 60.4 s. (a) Find the moment of inertia of the wheel. kg · m2 (b) Find the magnitude of the torque due to friction. N · m (c) Find the total number of revolutions of the wheel during the entire interval of 66.2 s.
Physics
1 answer:
Cerrena [4.2K]3 years ago
5 0

Answer:

a) I = 19.799\,kg\cdot m^{2}, b) T = -3.405\,N\cdot m, c) n_{T} \approx 54.842\,rev

Explanation:

a) The net torque is:

T = I\cdot \alpha

Let assume a constant angular acceleration, which is:

\alpha = \frac{\omega-\omega_{o}}{t}

\alpha = \frac{10.4\,\frac{rad}{s} - 0\,\frac{rad}{s} }{5.80\,s}

\alpha = 1.793\,\frac{rad}{s^{2}}

The moment of inertia of the wheel is:

I = \frac{T}{\alpha}

I = \frac{35.5\,N\cdot m}{1.793\,\frac{rad}{s^{2}} }

I = 19.799\,kg\cdot m^{2}

b) The deceleration of the wheel is due to the friction force. The deceleration is:

\alpha = \frac{\omega-\omega_{o}}{t}

\alpha = \frac{0\,\frac{rad}{s} - 10.4\,\frac{rad}{s}}{60.4\,s}

\alpha = - 0.172\,\frac{rad}{s^{2}}

The magnitude of the torque due to friction:

T = (19.799\,kg\cdot m^{2})\cdot (-0.172\,\frac{rad}{s^{2}} )

T = -3.405\,N\cdot m

c) The total angular displacement is:

\theta_{T} = \theta_{1} + \theta_{2}

\theta_{T} = \frac{(10.4\,\frac{rad}{s} )^{2}-(0\,\frac{rad}{s} )^{2}}{2\cdot (1.793\,\frac{rad}{s^{2}} )} + \frac{(0\,\frac{rad}{s} )^{2}-(10.4\,\frac{rad}{s} )^{2}}{2\cdot (-0.172\,\frac{rad}{s^{2}} )}

\theta_{T} = 344.580\,rad

The total number of revolutions of the wheel is:

n_{T} = \frac{\theta_{T}}{2\pi}

n_{T} = \frac{344.580\,rad}{2\pi}

n_{T} \approx 54.842\,rev

You might be interested in
What is the acceleration of a softball if it has a mass of 0.5 kg and hits the cathers glove with a force of 25n
ioda
Acceleration is found if we have the force and mass. 

With the following equation: F = ma, we can find the missing values. 

F = 25n
M = 0.5 kg
a = ?

a = f/m
a = 25/0.5
a = 50

a = 50 m/s

So, the acceleration is 50 m/s^2 
3 0
3 years ago
A 3.35 kg object initially moving in the positive x direction with a velocity of 4.90 m s collides with and sticks to a 1.88 kg
ahrayia [7]

Answer:

The final components of velocity of the composite object is 3.33 m/s.

Explanation:

Given;

mass of the first object, m₁ = 3.35 kg

initial velocity of the first object, u₁ = 4.90 m/s in positive x-direction

mass of the second object, m₂ = 1.88 kg

initial velocity of the second object, u₂ = 3.12 m/s in negative y-direction

initial momentum of the first object, P₁ = 3.35 x 4.9 = 16.415 kgm/s

initial momentum of the second object, P₂ = 1.88 x 3.12 = 5.8656 kgm/s

The resultant velocity of the two objects is given by;

R² = 16.415² + 5.8656²

R² = 303.858

R = √303.858

R = 17.432 kgm/s

Apply the principle of conservation of linear momentum for inelastic collision;

total initial momentum before = total final momentum after collision

P₁(x) + P₂(y) = Pf

R = Pf

R = v(m₁ + m₂)

17.432 = v(m₁ + m₂)

where;

v is the final components of velocity of the composite object

v = \frac{17.432}{m_1 + m_2} \\\\v = \frac{17.432}{3.35+1.88} \\\\v = 3.33 \ m/s

Therefore, the final components of velocity of the composite object is 3.33 m/s.

8 0
3 years ago
A child throws a ball vertically upward to a friend on a balcony 28 m above him. The friend misses the ball on its upward flight
photoshop1234 [79]

Answer:

t=1.9 sec

Explanation:

From the question we are told that:

Height h=28m

Time t=3s

Generally the Newton's equation for Initial velocity upward is mathematically given by

 s=ut+\frtac{1}{2}at^2

 28=3u-\frac{1}{2}*9.8*3^2

 u=24.03m/s

Generally the velocity at  elevation and depression occurs  as ball arrives and passes through S=28

 v=\sqrt{24.03-2*9.8*28}

 v=5.35m/s and -5.35m/s

Generally the Newton's equation for time to reach initial velocity  is mathematically given by

 v=u+at

 5.35=24.03-9.8t

 t=\frac{28.03-5.35}{9.8}

 t=1.9 sec

4 0
3 years ago
Two common terms for a decrease in velocity are
Colt1911 [192]

deceleration or rėtardation i’m pretty sure (it won’t let me say the second word but it’s correct)

6 0
4 years ago
Read 2 more answers
Which statement most completely describes a Lewis electron dot diagram? A.
andrezito [222]

Answer:

i do not know

Explanation:

5 0
3 years ago
Read 2 more answers
Other questions:
  • Which type of element has the following general properties: solid at room temperature, high luster, good conductor of heat and e
    13·1 answer
  • M+2-4=3 solve and get 50 pts
    8·2 answers
  • ¿Cuánto tiempo tardaré en completar la distancia de una maratón 89.66km si corro a una velocidad media de 756.66km\h?
    12·1 answer
  • A block of a plastic material floats in water with 35.6% of its volume under water. What is the density of the block in kg/m3
    9·1 answer
  • A fan is driven by an electric motor. Explain how adding a thermistor to the circuit would make the fan move faster when the roo
    11·2 answers
  • PLSEAE HELP ME I WILL GIVE BRIANLYEST!!!!
    5·1 answer
  • In the one pulley system when you move the Mass from The 20-centimeter Mark to the 15 centimeter mark it moves to my 5cm how far
    7·1 answer
  • Picture is below! Thank you​
    5·1 answer
  • The heat vaporization for methyl alcohol is 1100 kj/kg. It is 2257 KJ/Kg for water. Thus means that______________.
    11·1 answer
  • How to live a life like scientists​
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!