The Gulf Stream, for example, has an average speed of 4 mph, or 100 miles/day, or 3600 miles/year, in round numbers. A complete circuit around the Atlantic is 8 or 10 thousand miles, which would take around 3 years on a raft.
Answer:
From the narrative in the question, there seem to have been a break failure and the ordered step of response to this problem is to
1) Put on the hazard light to inform other road users of a problem or potential fault with your car and so they should continue their journey with caution.
2) Avoid pressing on the acceleration pedal as this might cause the car to gradually slow down due to friction and gravity
3)Try navigate the car to the service lane. This is the less busy lane where cars are sometimes parked briefly.
4) Continuously pump the breaks to try stop the car. Continuously pumping the breaks might just help you build enough pressure to stop the car because often time, there are some pressure left in the break.
5) At this point, the speed of the car should be relatively slow. So at this point, you could try apply the emergency hand break. Do not pull the emergency hand breaks if the car is on high speed. Doing this may cause the car to skid off the road.
Answer:
v = 2.94 m/s
Explanation:
When the spring is compressed, its potential energy is equal to (1/2)kx^2, where k is the spring constant and x is the distance compressed. At this point there is no kinetic energy due to there being no movement, meaning the net energy in the system is (1/2)kx^2.
Once the spring leaves the system, it will be moving at a constant velocity v, if friction is ignored. At this time, its kinetic energy will be (1/2)mv^2. It won't have any spring potential energy, making the net energy (1/2)mv^2.
Because of the conservation of energy, these two values can be set equal to each other, since energy will not be gained or lost while the spring is decompressing. That means
(1/2)kx^2 = (1/2)mv^2
kx^2 = mv^2
v^2 = (kx^2)/m
v = sqrt((kx^2)/m)
v = x * sqrt(k/m)
v = 0.122 * sqrt(125/0.215) <--- units converted to m and kg
v = 2.94 m/s
Answer:
Explanation:
The stored elastic energy in the spring helps the box to rise to a height of .75 m
So stored elastic energy = potential energy attained
1/2 k d² = mgh , k is spring constant , d is compression in spring , m is mass of box , h is height attained .
Putting the values
.5 x 220 x d² = 4 x 9.8 x .75
d² = .2673
d = .517 m
51.7 cm .