Power = (work or energy) / (time)
100 W = (energy) / (20 sec)
Energy = 2,000 watt-sec
<em>Energy = 2,000 J</em>
The fraction of energy that is lost is 25%, it depends how fast the ball was going until it lost 25% of its energy, the gravitational energy was transferred into the kinetic energy that helped the ball bounce back
Answer: K.E = 0.4 J
Explanation:
Given that:
M = 1.0 kg
h = 0.04 m
K.E = ?
According to conservative of energy
K.E = P.E
K.E = mgh
K.E = 1 × 9.81 × 0.04
K.E = 0.3924 Joule
The kinetic energy of the pendulum at the lowest point is 0.39 Joule
First, let's express the movement of Car A and B in terms of their position over time (relative to car B)
For car A: y=20x-200 Car A moves 20 meters every second x, and starts 200 meters behind car B
For Car B: y= 15x Car B moves 15 meters every second and starts at our basis point
Set the two equations equal to one another to find the time x at which they meet:
20x - 200 = 15x
200 = 5x
x= 40
At time x=40 seconds, the cars meet. How far will Car A have traveled at this time?
Car A moves 20 meters every second:
20 x 40 = 800 meters