1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yawa3891 [41]
3 years ago
7

List the steps you would use to reach one of your personal growth goals.

Physics
1 answer:
Zinaida [17]3 years ago
6 0
Im not sure, but here are a few of mine : Learn to be silent, and listen, take massive action and be proactive, listen, focus, and lastly, persist. Hope this helped! (:
You might be interested in
Which type of radiation has the highest penetrating power?
Papessa [141]
<span>electromagnetic.........</span>
6 0
3 years ago
If you are watching TV programs from 3:50AM-5:30AM for how much hour you are watching
andreev551 [17]

Answer:

You would be watching tv for 1 hour and 40 mins

Explanation:

How much time take it take for 3:50 am to 5:30

6 0
3 years ago
Read 2 more answers
A closely wound, circular coil with a diameter of 4.30 cm has 470 turns and carries a current of 0.460 A .
Nadusha1986 [10]

Hi there!

a)
Let's use Biot-Savart's law to derive an expression for the magnetic field produced by ONE loop.

dB = \frac{\mu_0}{4\pi} \frac{id\vec{l} \times \hat{r}}{r^2}

dB = Differential Magnetic field element

μ₀ = Permeability of free space (4π × 10⁻⁷ Tm/A)

R = radius of loop (2.15 cm = 0.0215 m)

i = Current in loop (0.460 A)

For a circular coil, the radius vector and the differential length vector are ALWAYS perpendicular. So, for their cross-product, since sin(90) = 1, we can disregard it.

dB = \frac{\mu_0}{4\pi} \frac{id\vec{l}}{r^2}

Now, let's write the integral, replacing 'dl' with 'ds' for an arc length:
B = \int \frac{\mu_0}{4\pi} \frac{ids}{R^2}

Taking out constants from the integral:
B =\frac{\mu_0 i}{4\pi R^2}  \int ds

Since we are integrating around an entire circle, we are integrating from 0 to 2π.

B =\frac{\mu_0 i}{4\pi R^2}  \int\limits^{2\pi R}_0 \, ds

Evaluate:
B =\frac{\mu_0 i}{4\pi R^2}  (2\pi R- 0) = \frac{\mu_0 i}{2R}

Plugging in our givens to solve for the magnetic field strength of one loop:

B = \frac{(4\pi *10^{-7}) (0.460)}{2(0.0215)} = 1.3443 \mu T

Multiply by the number of loops to find the total magnetic field:
B_T = N B = 0.00631 = \boxed{6.318 mT}

b)

Now, we have an additional component of the magnetic field. Let's use Biot-Savart's Law again:
dB = \frac{\mu_0}{4\pi} \frac{id\vec{l} \times \hat{r}}{r^2}

In this case, we cannot disregard the cross-product. Using the angle between the differential length and radius vector 'θ' (in the diagram), we can represent the cross-product as cosθ. However, this would make integrating difficult. Using a right triangle, we can use the angle formed at the top 'φ', and represent this as sinφ.  

dB = \frac{\mu_0}{4\pi} \frac{id\vec{l} sin\theta}{r^2}

Using the diagram, if 'z' is the point's height from the center:

r = \sqrt{z^2 + R^2 }\\\\sin\phi = \frac{R}{\sqrt{z^2 + R^2}}

Substituting this into our expression:
dB = \frac{\mu_0}{4\pi} \frac{id\vec{l}}{(\sqrt{z^2 + R^2})^2} }(\frac{R}{\sqrt{z^2 + R^2}})\\\\dB = \frac{\mu_0}{4\pi} \frac{iRd\vec{l}}{(z^2 + R^2)^\frac{3}{2}} }

Now, the only thing that isn't constant is the differential length (replace with ds). We will integrate along the entire circle again:
B = \frac{\mu_0 iR}{4\pi (z^2 + R^2)^\frac{3}{2}}} \int\limits^{2\pi R}_0, ds

Evaluate:
B = \frac{\mu_0 iR}{4\pi (z^2 + R^2)^\frac{3}{2}}} (2\pi R)\\\\B = \frac{\mu_0 iR^2}{2 (z^2 + R^2)^\frac{3}{2}}}

Multiplying by the number of loops:
B_T= \frac{\mu_0 N iR^2}{2 (z^2 + R^2)^\frac{3}{2}}}

Plug in the given values:
B_T= \frac{(4\pi *10^{-7}) (470) (0.460)(0.0215)^2}{2 ((0.095)^2 + (0.0215)^2)^\frac{3}{2}}} \\\\ =  0.00006795 = \boxed{67.952 \mu T}

5 0
1 year ago
Read 2 more answers
A planet exerts a gravitational force of magnitude 4e22 N on a star. If the planet were 3 times closer to the star (that is, if
Alex_Xolod [135]

Answer:

3.6\times10^{23} N

Explanation:

F=\frac{GmM}{r^2}=4\times10^{22} N

F'=\frac{GmM}{(r/3)^2}=9\frac{GmM}{r^2}=9\times4\times10^{22}=3.6\times10^{23} N

7 0
2 years ago
An electric bulb is marked 40volts ,230w another bulb is marked 40w,110v
Andrej [43]

Answer:

a. The ratio of their resistance is 2783:64

b. The ratio of their energy is 4:23

c. The charge on the first bulb is 5.75 C

The charge on the second bulb is 0.\overline {36} C

Explanation:

The voltage on one of the electric bulbs, V₁ = 40  volts

The power rating of the bulb, P₁ = 230 w

The voltage on the other electric bulbs, V₂ = 110 volts

The power rating of the bulb, P₂ = 40 w

a. The power is given by the formula, P = I·V = V²/R

Therefore, R = V²/P

For the first bulb, the resistance, R₁ = 40²/230 ≈ 6.96

The resistance of the second bulb, R₂ = 110²/40

The ratio of their resistance, R₂/R₁ = (110²/40)/(40²/230) = 2783/64

∴ The ratio of their resistance, R₂:R₁ = 2783:64

b. The energy of a bulb, E = t × P

Where;

t = The time in which the bulb is powered on

∴ The energy of the first bulb, E₁ = 230 w × t

The energy of the second bulb, E₂ = 40 w × t

The ratio of their energy, E₂/E₁ = (40 w × t)/(230 w × t) = 4/23

∴ The ratio of their energy, E₂:E₁ = 4:23

c. The charge on a bulb, 'Q', is given by the formula, Q = I × t

Where;

I = The current flowing through the bulb

From P = I·V, we get;

I = P/V

For the first bulb, the current, I = 230 w/40 V = 5.75 amperes

The charge on the first bulb per second (t = 1) is therefore;

Q₁ = 5.75 A × 1 s = 5.75 C

The charge on the first bulb, Q₁ = 5.75 C

Similarly, the charge on the second bulb, Q₂ = (40 W/110 V) × 1 s = 0.\overline {36} C

The charge on the second bulb, Q₂ = 0.\overline {36} C.

d. The question has left out parts

4 0
2 years ago
Other questions:
  • What is the frequency of a wave?
    8·1 answer
  • If a 20 N object has been lifted 5 meters above the ground, how much gravitational potential energy does it have?
    14·2 answers
  • An object is inside a room that has a constant temperature of 292 K. Via radiation, the object emits three times as much power a
    13·1 answer
  • What is the role of the midbrain, and which part of the midbrain is important for arousing the forebrain?
    8·1 answer
  • 8N<br>4550<br>o<br>Go<br>and the resultant of the system<br>Eul<br>22​
    9·1 answer
  • Now we’ll use the component method to add two vectors. We will use this technique extensively when we begin to consider how forc
    5·1 answer
  • Discuss how a sheet can be made water proof​
    12·1 answer
  • SIEVERT (SV) IS THE PRODUCT OF ABSORBED DOSE AND RADIATION WEIGHTING FACTOR<br> T True<br> F False
    8·1 answer
  • if the momentum of a 1,400 kg car is the same as the truck in question 17, what is the velocity of the car?
    8·1 answer
  • A force of 36N acts at an angle of 55 degrees to the vertical. The force moves its point of application by 64 cm in the directio
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!