1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dennis_Churaev [7]
3 years ago
11

A normal mode of a closed system is an oscillation of the system in which all parts oscillate at a single frequency. In general

there are an infinite number of such modes, each one with a distinctive frequency fi and associated pattern of oscillation.
Consider an example of a system with normal modes: a string of length L held fixed at both ends, located at x=0 and x=L. Assume that waves on this string propagate with speed v. The string extends in the x direction, and the waves are transverse with displacement along the y direction.

In this problem, you will investigate the shape of the normal modes and then their frequency.

The normal modes of this system are products of trigonometric functions. (For linear systems, the time dependance of a normal mode is always sinusoidal, but the spatial dependence need not be.) Specifically, for this system a normal mode is described by

yi(x,t)=Ai sin(2π*x/λi)sin(2πfi*t)

A)The string described in the problem introduction is oscillating in one of its normal modes. Which of the following statements about the wave in the string is correct?

The wave is traveling in the +x direction.
a) The wave is traveling in the -x direction.
b) The wave will satisfy the given boundary conditions for any arbitrary wavelength lambda_i.
c) The wavelength lambda_i can have only certain specific values if the boundary conditions are to be satisfied.
d) The wave does not satisfy the boundary condition y_i(0;t)=0.
B)Which of the following statements are true?

a)The system can resonate at only certain resonance frequencies f_i and the wavelength lambda_i must be such that y_i(0;t) = y_i(L;t) = 0.
b) A_i must be chosen so that the wave fits exactly on the string.
c) Any one of A_i or lambda_i or f_i can be chosen to make the solution a normal mode.

C) Find the three longest wavelengths (call them lambda_1, lambda_2, and lambda_3) that "fit" on the string, that is, those that satisfy the boundary conditions at x=0 and x=L. These longest wavelengths have the lowest frequencies.

D) The frequency of each normal mode depends on the spatial part of the wave function, which is characterized by its wavelength lambda_i.

Find the frequency f_i of the ith normal mode.
Physics
1 answer:
valentina_108 [34]3 years ago
6 0

Answer:

Explanation:

(A)

The string has set of normal modes and the string is oscillating in one of its modes.

The resonant frequencies of a physical object depend on its material, structure and boundary conditions.

The free motion described by the normal modes take place at the fixed frequencies and these frequencies is called resonant frequencies.

Given below are the incorrect options about the wave in the string.

• The wave is travelling in the +x direction

• The wave is travelling in the -x direction

• The wave will satisfy the given boundary conditions for any arbitrary wavelength \lambda_i

• The wave does not satisfy the boundary conditions y_i(0;t)=0


Here, the string of length L held fixed at both ends, located at x=0 and x=L

The key constraint with normal modes is that there are two spatial boundary conditions,y(0,1)=0


and y(L,t)=0

.The spring is fixed at its two ends.

The correct options about the wave in the string is

• The wavelength \lambda_i  can have only certain specific values if the boundary conditions are to be satisfied.

(B)

The key factors producing the normal mode is that there are two spatial boundary conditions, y_i(0;t)=0 and y_i(L;t)=0, that are satisfied only for particular value of \lambda_i  .

Given below are the incorrect options about the wave in the string.

•  A_i must be chosen so that the wave fits exactly o the string.

• Any one of  A_i or \lambda_i  or f_i  can be chosen to make the solution a normal mode.

Hence, the correct option is that the system can resonate at only certain resonance frequencies f_i and the wavelength \lambda_i  must be such that y_i(0;t) = y_i(L;t)=0


(C)

Expression for the wavelength of the various normal modes for a string is,

\lambda_n=\frac{2L}{n} (1)

When n=1 , this is the longest wavelength mode.

Substitute 1 for n in equation (1).

\lambda_n=\frac{2L}{1}\\\\2L

When n=2 , this is the second longest wavelength mode.

Substitute 2 for n in equation (1).

\lambda_n=\frac{2L}{2}\\\\L

When n=3, this is the third longest wavelength mode.

Substitute 3 for n in equation (1).

\lambda_n=\frac{2L}{3}

Therefore, the three longest wavelengths are 2L,L and \frac{2L}{3}.

(D)

Expression for the frequency of the various normal modes for a string is,

f_n=\frac{v}{\lambda_n}

For the case of frequency of the i^{th} normal mode the above equation becomes.

f_i=\frac{v}{\lambda_i}

Here, f_i is the frequency of the i^{th} normal mode, v is wave speed, and \lambda_i is the wavelength of i^{th} normal mode.

Therefore, the frequency of i^{th} normal mode is  f_i=\frac{v}{\lambda_i}

.

You might be interested in
A rock with a mass of 8 kg falls straight down from a height of 7 m. What work is done?
fenix001 [56]
F=MA
F=(8 kg)(9.8 m/s)
F= 78.4 N
W=FD
W=(78.4 N)(7 m)
W=548.8 J
How this helps
7 0
3 years ago
Which of the following are equivalent units?
ratelena [41]

Answer:

B is the correct answer

Explanation:

5 0
3 years ago
A car with a total mass of 1800 kg (including passengers) is driving down a washboard road with bumps spaced 4.9 m apart. The ri
Drupady [299]

Answer:

k = 9.6 x 10^5 N/m or 9.6 kN/m

Explanation:

First, we need to use the expression to calculate the spring constant which is:

w² = k/m

Solving for k:

k = w²*m

To get the angular velocity:

w = 2πf

The problem is giving the linear velocity of the car which is 5.7 m/s. With this we can calculate the frequency of the car:

f = V/x

f = 5.7 / 4.9 = 1.16 Hz

Now the angular velocity:

w = 2π*1.16

w = 7.29 rad/s

Finally, solving for k:

k = (7.29)² * 1800

k = 95,659.38 N/m

In two significant figures it'll ve 9.6 kN/m

5 0
3 years ago
Read 2 more answers
How far from the castle wall does the launched rock hit the ground?
lina2011 [118]
King Arthur's knights use a catapult to launch a rock from their vantage point on top of the castle wall, 14 m above the moat. The rock is launched at a speed of 27 m/s and an angle of 32degrees above the horizontal.
4 0
3 years ago
Read 2 more answers
25.16 what is the reaction product of acetic acid and ethylamine at room temperature?
Ne4ueva [31]

The ammonium salt of acetic acid is the reaction product of acetic acid and ethylamine at room temperature

<h3 /><h3>What is acetic acid ?</h3>

Acetic acid is a monofunctional carboxylic acid containing two carbon atoms. It acts as a protein solvent,  food acidity regulator, antibacterial food preservative. It is a conjugate acid of an acetate.

Acetic acid is used in the production  of acetic anhydride, cellulose acetate, vinyl acetate monomer, acetic ester, chloroacetic acid, plastics, dyes, insecticides, photographic chemicals, and rubber. Other commercial uses include the production of vitamins, antibiotics, hormones,  organic chemicals, and as a food additive. Typical concentrations of acetic acid found naturally in foods are 700 to 1200 milligrams/kg (mg/kg) in wine, up to 860 mg/kg in aged cheeses, and 2.8 mg/kg in aged cheeses. fresh orange juice.

 

learn more about acetic acid, visit;

brainly.com/question/16970860

#SPJ4

7 0
11 months ago
Other questions:
  • Why are radio waves considered harmless while ultraviolet waves and x-rats considered harmful
    13·1 answer
  • Bob and John are pulling in different directions. If Bob is pulling to the right with a force of 10N, and John is pulling to the
    12·1 answer
  • Which list correctly identifies each particle?
    12·2 answers
  • A plane flies at 200 m/s, emitting a 600 Hz roar. Assuming a 340 m/s speed of sound, what will be the frequency of sound waves h
    11·1 answer
  • Severe weather often includes destructive events such as Hurricanes and Tornadoes where air is moving much faster than usual. Tr
    6·2 answers
  • Mrs. Drover is able to see the taxi driver because of the aperture, or
    11·1 answer
  • If AB has a bearing of following 234° 51' 48" and a anti-clockwise angle from AB to C is measured as 80° Calculate the bearing A
    11·1 answer
  • While waiting for his Mom to come out of the hairdresser's, Sean accidentally puts the car in gear and it begins to roll forward
    6·1 answer
  • A transformer is used to convert mechanical energy to electric energy
    12·1 answer
  • Can anybody help me with this Physics question! (DUE TOMORROW) (WILL MARK BRAINLIST)
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!