Answer:
C.) A high velocity and Large mass.
Explanation:
Momentum of any object is defined by following formula
Here
: m = mass of object
v = velocity of object
now we know that since momentum is product of mass and velocity
So in order to have more momentum we need the value of this product to be more. So this product will me large is both the physical quantity will be more in magnitude. So if mass is large and velocity will be more then the product of them will be large and hence the momentum of object will be more. Btw I had that question too.
Lett me come back imma translate this... and then ill come to help
Answer:
0.426 L
Explanation:
Boyles law is expressed as p1v1=p2v2 where
P1 is first pressure, v1 is first volume
P2 is second pressure, v2 is second volume.
Given information
P1=96 kPa, v1=0.45 l
P2=101.3 kpa
Unknown is v2
Making v2 the subject from Boyle's law

Substituting the given values then

Therefore, the volume is approximately 0.426 L
Answer:
241.7 s
Explanation:
We are given that
Charge of particle=
Kinetic energy of particle=
Initial time=
Final potential difference=
We have to find the time t after that the particle is released and traveled through a potential difference 0.351 V.
We know that

Using the formula


Initial voltage=

Using the formula





Hence, after 241.7 s the particle is released has it traveled through a potential difference of 0.351 V.
Answer:twice of initial value
Explanation:
Given
spring compresses
distance for some initial speed
Suppose v is the initial speed and k be the spring constant
Applying conservation of energy
kinetic energy converted into spring Elastic potential energy

When speed doubles

divide 1 and 2


Therefore spring compresses twice the initial value