Answer:
c) depends only on the type of fluid
Explanation:
The pressure of a fluid at a specific depth is given by:
where
is the density of the fluid
g is the gravitational acceleration
h is the depth
We see that for a given depth h, the pressure of the fluid depends only on its density, so only on the type of fluid. Therefore, the correct choice is
a) depends only on the type of fluid
The other choices are wrong because:
b) the pressure is exerted in every direction
c) the pressure does not depend on the total volume of the fluid, but only on the depth h
Answer:
the magnetic field experienced by the electron is 0.0511 T
Explanation:
Given the data in the question;
Wavelength λ = 21 cm = 0.21 m
we know that Bohr magneton μ
is 9.27 × 10⁻²⁴ J/T
Plank's constant h is 6.626 × 10⁻³⁴ J.s
speed of light c = 3 × 10⁸ m/s
protein spin causes magnetic field in hydrogen atom.
so
Initial potential energy = -μ
B × cos0°
= -μ
B × 1
= -μ
B
Final potential energy = -μ
B × cos180°
= -μ
B × -1
= μ
B
so change in energy will be;
ΔE = μ
B - ( -μ
B )
ΔE = 2μ
B
now, difference in energy levels will be;
ΔE = hc/λ
2μ
B = hc/λ
2μ
Bλ = hc
B = hc / 2μ
λ
so we substitute
B = [(6.626 × 10⁻³⁴) × (3 × 10⁸)] / [2(9.27 × 10⁻²⁴) × 0.21 ]
B = [ 1.9878 × 10⁻²⁵ ] / [ 3.8934 × 10⁻²⁴ ]
B = 510556326.09
B = 0.0511 T
Therefore, the magnetic field experienced by the electron is 0.0511 T
Answer:
248
Explanation:
L = Inductance of the slinky = 130 μH = 130 x 10⁻⁶ H
= length of the slinky = 3 m
N = number of turns in the slinky
r = radius of slinky = 4 cm = 0.04 m
Area of slinky is given as
A = πr²
A = (3.14) (0.04)²
A = 0.005024 m²
Inductance is given as


N = 248