Answer:
- the coating’s index of refraction is 1.25
- the required thickness is 104.1667 nm
Explanation:
Given the data in the question;
Thickness of coating t = 100 nm
wavelength λ = 500nm
we know that refractive index is;
t = λ/4n
make n, the subject of formula
t4n = λ
n = λ / 4t
we substitute
n = 500 / ( 4 × 100 )
n = 500 / 400
n = 1.25
Therefore, the coating’s index of refraction is 1.25
2)
given that;
Index of refraction of the coating; n = 1.20
λ = 500 nm
thickness of coating t = ?
t = λ / 4n
we substitute
t = 500 / ( 4 × 1.2 )
t = 500 / 4.8
t = 104.1667 nm
Therefore, the required thickness is 104.1667 nm
These are exaxmples of a quantitative observation.
Measuring is the expression of an observed quantity in a number with a relevant unit that can be compared with other values of the same quantity.
It is not limited to physical quantities, but extends to a quantitative description of the whole of reality. Measurements are usually quantitative observations, and their results are expressed in
- numerical values, and
- units
Learn more about quantitative observations in brainly.com/question/12042148.
The si unit of force is newton.
so, F is eqal to m*g
Answer:
The distance away the center of the earthquake is 1083.24 km.
Explanation:
Given that,
Speed of transverse wave = 9.1\ km/s
Speed of longitudinal wave = 5.7 km/s
Time = 71 sec
We need to calculate the distance of transverse wave
Using formula of distance

....(I)
The distance of longitudinal wave
....(II)
From the first equation

Put the value of t in equation (II)




Hence, The distance away the center of the earthquake is 1083.24 km.
C. The strong nuclear force is only attractive and acts over shorter distances