Answer:
Approximately
, assuming that
.
Explanation:
Let
and
denote the mass and acceleration of Spiderman, respectively.
There are two forces on Spiderman:
- Downward gravitational attraction from the earth:
. - Upward tension force from the strand of web
.
The directions of these two forces are exactly opposite of one another. Besides, because Spiderman is accelerating upwards, the magnitude of
(which points upwards) should be greater than that of
(which points downwards towards the ground.)
Subtract the smaller force from the larger one to find the net force on Spiderman:
.
On the other hand, apply Newton's Second Law of motion to find the value of the net force on Spiderman:
.
Combine these two equations to get:
.
Therefore:
.
By Newton's Third Law of motion, Spiderman would exert a force of the same size on the strand of web. Hence, the size of the force in the strand of the web should be approximately
(downwards.)
Answer:
178 cm3
Explanation:
From definition of density, it is mass per unit volume of an object, expressed as density=mass/volume and making volume the subject of the above formula we have volume= mass/density and substituting 0.00296 g for mass and 0.00001663 g/cm3 for density then we have
Volume=0.00296/0.00001663
Volume is approximately 178 cm3
Answer:
273 Kelvin
Explanation:
If -273 Celsius is 0 Kelvin, then 273 Kelvin will be 0 Celsius.
Answer:
Diverging lens
Explanation:
Given parameters:
Power of lens = -2.0D
Unknown:
Focal length = ?
Solution:
The power of lens is the reciprocal of the focal length;
P =
where f is the focal length
f =
=
The lens is a diverging lens