Answer:
h=15.27m
Explanation:
Since at maximum height the vertical velocity must be null it's better to use the formula:

We will use this formula for the vertical direction, choosing the upward direction as the positive one, so we have:

or

which for our values is:

<u>Answer:</u> The Young's modulus for the wire is 
<u>Explanation:</u>
Young's Modulus is defined as the ratio of stress acting on a substance to the amount of strain produced.
The equation representing Young's Modulus is:

where,
Y = Young's Modulus
F = force exerted by the weight = 
m = mass of the ball = 10 kg
g = acceleration due to gravity = 
l = length of wire = 2.6 m
A = area of cross section = 
r = radius of the wire =
(Conversion factor: 1 m = 1000 mm)
= change in length = 1.99 mm = 
Putting values in above equation, we get:

Hence, the Young's modulus for the wire is 
Answer:
Acoustic microstreaming
Explanation:
Acoustic microstreaming is the swirling effect produced by water stream confined in a spaced of a periodontal pocket.
- It is the movement of water in a particular direction as a result of mechanical pressure within the fluid body.
- They are often used in dental procedures to remove particulates from the teeth.
- It mostly relies on the properties of sound waves to achieve this goal
Answer:
, 
Explanation:
The magnitude of the electromagnetic force between the electron and the proton in the nucleus is equal to the centripetal force:

where
k is the Coulomb constant
e is the magnitude of the charge of the electron
e is the magnitude of the charge of the proton in the nucleus
r is the distance between the electron and the nucleus
v is the speed of the electron
is the mass of the electron
Solving for v, we find

Inside an atom of hydrogen, the distance between the electron and the nucleus is approximately

while the electron mass is

and the charge is

Substituting into the formula, we find

Answer:
a = 1.16 m/s²
Explanation:
In order to find the acceleration of the ball we will use 3rd equation of motion.
2as = Vf² - Vi²
where,
a = acceleration = ?
s = displacement = 21.9 m
Vf = Final Velocity = 7.14 m/s
Vi = Initial Velocity = 0 m/s (Since, ball starts from rest)
Therefore, using the values, we get:
2a(21.9 m) = (7.14 m/s)² - (0 m/s)²
a = (50.97 m²/s²)/(43.8 m)
<u>a = 1.16 m/s²</u>