1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Readme [11.4K]
3 years ago
5

A map is made of a park. The scale from the park to the map is 36 mi to 6 cm. The length of great oaks trail is 4.5 cm on this m

ap. The scale from the same park to a different map is 24 mi to 3 cm. The length of salamander trail is 3.5 cm on that map. Which is the longer trail, great oaks trail or salamander trail?
Mathematics
1 answer:
mina [271]3 years ago
7 0

Answer:

Salamander trail is longer than great oaks trail.

Step-by-step explanation:

We have the data from two different maps of the same park.

In the first map the length of great oaks trail is 4.5 cm

The scale from the park to the map is 36 mi to 6 cm ⇒

We can find the real length of great oaks trail writing the following equivalence :

\frac{36mi}{6cm}=\frac{x}{4.5cm}

Where x is the real length of great oaks trail ⇒

x=\frac{(36mi).(4.5cm)}{6cm}=27mi

We find that the real length of great oaks trail is 27 mi

In the second map the length of salamander trail is 3.5 cm

The scale from the park in the second map is 24 mi to 3 cm.

Again we can find the real length of salamander trail writing the equivalence :

\frac{24mi}{3cm}=\frac{y}{3.5cm}

Where y is the real length of salamander trail ⇒

y=\frac{(24mi).(3.5cm)}{3cm}=28mi

We find that the real length of salamander trail is 28 mi.

Therefore salamander trail is longer than great oaks trail.

You might be interested in
Identify the parts of the expression. Then write a word expression for the numerical or algebraic expression.
mixas84 [53]
2 = coefficient
e = variable
- = operation
f = variable

2e = 2 × e

f subtracted from the product of two and e
3 0
3 years ago
A research firm tests the miles-per-gallon characteristics of three brands of gasoline. Because of different gasoline performanc
Anni [7]

Answer:

A.) At α = 0.05, is there a significant difference in the mean miles-per-gallon characteristics of the three brands of gasoline.

B.)<u><em>The advantage of attempting to remove the block effect is</em></u>

The completely randomized designs does not prove that H0 is incorrect only that it cannot be rejected.

Step-by-step explanation:

<em><u /></em>

<em><u>Using Two-way ANOVA method</u></em>

Given problem

<em><u>Observation              I          II       III          Row total (xr)</u></em>

A                              18 21 20            59

B                            24 26 27             77

C                            30 29 34             93

D                            22 25 24            71

<u>E                            20 23 24           63                      </u>

Col total (xc)             114 124 129        367

∑x²=9233→(A)

∑x²c/r

=1/5(114²+124²+129²)

=1/5(12996+15376+16641)

=1/5(45013)

=9002.6→(B)

∑x²r/c

=1/3(59²+77²+93²+71²+67²)

=1/3(3481+5929+8649+5041+4489)

=1/3(27589)

=9196.3333→(C)

(∑x)²/n

=(367)²/15

=134689/15

=8979.2667→(D)

Sum of squares total

SST=∑x²-(∑x)²/n

=(A)-(D)

=9233-8979.2667

=253.7333

Sum of squares between rows

SSR=∑x²r/c-(∑x)²/n

=(C)-(D)

=9196.3333-8979.2667

=217.0667

Sum of squares between columns

SSC=∑x²c/r-(∑x)²/n

=(B)-(D)

=9002.6-8979.2667

=23.3333

Sum of squares Error (residual)

SSE=SST-SSR-SSC

=253.7333-217.0667-23.3333

=13.3333

<u>ANOVA table</u>

Source                 Sums         Degrees      Mean Squares

of Variation       of Squares   of freedom

<u>                               SS                 DF              MS       F p-value</u>

B/ w     SSR=217.0667              4 MSR=54.2667    32.56 0.0001

rows

B/w     SSC=23.3333         c-1=2 MSC=11.6667        7 0.01

columns

<u>Error (residual)SSE=13.3333 (r-1)(c-1)=8 MSE=1.6667                  </u>

<u>Total SST=253.7333 rc-1=14                                                        </u>

Conclusion:

<u> 1. F for between Rows</u>

The critical region for F(4,8) at 0.05 level of significance=3.8379

The calculated F for Rows=32.56>3.8379

Therefore H0 is rejected

<u>2. F for between Columns</u>

The critical region for F(2,8) at 0.05 level of significance=4.459

We see that the calculated F for Colums=7>4.459

therefore H0 is rejected,and concluded that there is significant differentiating between columns

<u><em>Part B:</em></u>

To analyze the data for completely  randomized designs click on anova two factor without replication  in the data analysis dialog box of the excel spreadsheet.

The following table is obtained

Source DF             Sum                  Mean           F Statistic

<u>                 (df1,df2)    of Square (SS) Square (MS)                    P-value</u>

Factor A       1 1496.5444 1496.5444 769.6514          0.001297

Rows

Factor B -     2 19.4444           9.7222               5                  0.1667

Columns

Interaction

AB               2    3.8889   1.9444        0.1013         0.9045

<u> Error     12   230.4            19.2                                           </u>

<u>Total 17 1750.2778 102.9575                                                         </u>

<u />

<u>Factor - A- Rows</u>

Since p-value < α, H0 is rejected.

<u>Factor - B- Columns</u>

Since p-value > α, H0 can not be rejected.

The averages of all groups assume to be equal.

<u>Interaction AB</u>

Since p-value > α, H0 can not be rejected.

<u><em>The advantage of attempting to remove the block effect is</em></u>

The completely randomized designs does not prove that H0 is incorrect only that it cannot be rejected.

3 0
3 years ago
16/25+8/5+4+10…+a10<br> what’s the sum of the series
sweet-ann [11.9K]

Answer:

correct answer is 406/25+a10

Step-by-step explanation:

6 0
2 years ago
The area of a square garden is 1/36 mi 2 how long is each side<br><br>​
Vitek1552 [10]

Answer:

1/6 meters

Step-by-step explanation:

Let the side length be x.

Then the area of the square = x^2

∴ x^2 = 1/36

√(x^2) = √(1^2 / 6^2)

x        = 1/6

Therefore, the side length is 1/6 meters.

Hope it helped you!!!

6 0
3 years ago
Help needed thanks it greatly appretiated
Ivan

c is the correct answer of this question

5 0
2 years ago
Read 2 more answers
Other questions:
  • How much should they be charged?
    12·1 answer
  • PLEASE ANSWER ASAP
    10·1 answer
  • How many students in ms. Leal class are more than 42 inches tall?
    6·1 answer
  • How do you eliminate the fractions on this to solve by elimination ????????
    15·2 answers
  • What is the relationship between 10% of 20.00 and 20% of 20.00
    9·2 answers
  • Need help on this please, a positive answer only :)!
    8·1 answer
  • If two side of a right angle triangle is 25cm and 15cm what is the length of the unknown side
    13·1 answer
  • Helpp mee pleaseeeeeeee
    6·1 answer
  • How can you solve A Problem Like this ? ​
    12·2 answers
  • Pls help! who ever solves first will be awarded brainiest!!! solve asap!
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!